An optical waveguide structure includes an air-via region that receives an optical signal from an optical source. A photonic crystal cladding region is formed on the surface of the air-via region. The photonic crystal cladding region confines the optical signal within the air-via region and propagates the optical signal along the axial direction while ensuring near complete transmission of the optical signal.

27 Claims, 20 Drawing Sheets
$n_2 = 2.2$

- $\alpha_{wg, TM}$
- $\alpha_{wg, TE}$
- α_{tot}
- α_{TE}
- α_{TM}

Number of stacks:
- 4
- 6
- 8
- 10
- 12

FIG. 5
PARTIAL CONFINEMENT PHOTONIC CRYSTAL WAVEGUIDES

BACKGROUND OF THE INVENTION

The invention relates to the field of photonic crystal waveguides, and in particular to a monolithically integrated waveguide structure that confines and guides light emitted from a laser or LED light source mounted on the backside of a silicon (Si) wafer, without power loss due to Si materials absorption in the wafer.

Photonic crystal waveguides have been demonstrated in cylindrical geometry fibers and recently in planar waveguides, by employing the principal of omnidirectional reflection for wavelengths of light whose optical states lie fully within a photonic bandgap, as confined by the light-line of the propagating medium.

FIG. 1A shows the photonic band diagram of a one-dimensional (1-D) periodic photonic crystal, and its comparison in FIG. 1B with the angular reflectivity spectra of Bragg gratings (Reflectors) – the historically popular name for 1-D photonic crystals. A photonic band diagram plots the allowed propagation constant β values for different (angular) frequencies ω of light. These propagation constant values correspond to different angles of the light wavevector within the Bragg reflector structure. The (Fresnel) reflectivity spectrum of Bragg gratings have been studied extensively; the reflectivity stopband has been understood to be an interferometric effect based on the two refractive index materials comprising the Bragg grating, n1 and n2, having quarter-wavelength film thicknesses which are normalized with respect to refractive index: t1 = λ/4n1, t2 = λ/4n2. The combination of the t1 and t2 layers are referred to as a Bragg pair of the grating.

The development of photonic crystal theory in the last fifteen years has arisen from the observation that the form of the Helmholtz equation for propagating modes of light is identical to the form of the Schrodinger equation for propagating electron states. Analogous to the electron’s conduction band states, valence band states, electronic bandgap and defect states within the bandgap, a periodic variation in refractive index modifies propagating modes of light to exist in either (1) low dielectric states (electric field intensity concentrated within the n1 Bragg pair regions), (2) high dielectric states (electric field intensity concentrated within the n2 Bragg pair regions), (3) a prohibited range of light frequencies referred to as the optical or photonic bandgap, and (4) any other properties of material that localize electric field distributions for light frequencies with propagation constant values lying within the photonic bandgap.

The photonic bandgap was immediately recognized to be the reflectivity stopband of Bragg reflectors. FIG. 1B shows how the reflectivity of a Bragg grating, for a given angle, can now be more generally understood as a straight line trajectory, with a given slope, on the photonic band diagram in FIG. 1A. This more generalized understanding of the Bragg interference phenomena shortly gave rise to a very important conclusion: a Bragg grating could reflect light incident from all angles in air, without the requirement that there be a complete photonic bandgap, at the wavelength of interest.

Wavelengths of light incident from air onto the Bragg grating, or equivalently, the 1-D photonic crystal, will transmit into the structure only if there exist propagating modes within the light-line. The light-line is a line whose slope corresponds to the speed of light divided by the refractive index of the incident medium—in this case, air with n = 1.0. For wavelengths at which there exists only the photonic bandgap, within the light-line, transmission into the structure will be prohibited. Hence an omni-directional reflector can be built using Bragg reflector materials n1 and n2, which otherwise do not possess a complete photonic bandgap.

An omni-directional reflector could be folded about itself to contain an air gap, or guiding defect layer, thus creating a coaxial structure which could trap light within the air gap and guide it along the axial direction. This new type of waveguide follows light propagation physics that differs from the total internal reflection based physics of conventional fiber optics and planar waveguides.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is provided an optical waveguide structure, which includes an air via region that receives an optical signal from an optical source. A photonic crystal cladding region is formed on the surface of the air via region. The photonic crystal cladding region confines the optical signal within the air via region and propagates the optical signal along the axial direction while ensuring near complete transmission of the optical signal.

According to another aspect of the invention, there is provided a monolithically optical structure, which includes a waveguide structure. A waveguide structure includes an air via region that receives an optical signal from an optical source. A photonic crystal cladding region is formed on the surface of the air via region. The photonic crystal cladding region confines the optical signal within the air via region and propagates the optical signal along the axial direction while ensuring near complete transmission of the optical signal.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are graphs showing a photonic band diagram of a 1-D photonic crystal and the reflectivity spectra of a Bragg grating/reflectors at different incidence angles; these incidence angles correspond to linear trajectories across the photonic band diagram of a 1-D photonic crystal;

FIG. 2A is a schematic diagram of an air-via design for wafer backside integration of a POPO or single mode fiber optic or multimode fiber optic guided light source (λ = 850 nm) with an IC chip frontside; FIG. 2B is a schematic diagram illustrating a monolithically integrated partial confinement photonic crystal waveguide;

FIG. 3 is a photonic band diagram demonstrating the geometric rotation of the partial confinement photonic crystal waveguide by 90° at the terminating end of the air-via;

FIGS. 4A-4D are graphs illustrating TE and TM photonic band diagrams for the nominally designed structure;

FIG. 5 is a graph demonstrating TE and TM mode propagation loss in dB/cm and endpoint transmission loss in dB as a function of the number of SiON/SiO2 or SiN/SiO2 pairs (stacks) making up the 1-D photonic crystal;

FIGS. 6A-6B is a graph demonstrating an apodized profile applied to a partial confinement photonic crystal waveguide;

FIGS. 7A-7D are graphs demonstrating TE reflectivity from an apodized profile partial confinement photonic crystal waveguide;
FIGS. 8A-8D are graphs demonstrating TM reflectivity from an apodized profile partial confinement photonic crystal waveguide; and
FIGS. 9A-9D are graphs demonstrating reflectivity and propagation loss after an air-via distance of 500 µm for the two incidence angles 0–78.46° and 0–90°.

DETAILED DESCRIPTION OF THE INVENTION

The invention is a monolithically integrated waveguide structure, which can simultaneously (1) optically isolate a λ=850 nm light signal inside an air-via (waveguiding the light from the IC wafer backside to the chip frontside while minimizing the amount of signal power absorbed by the Si substrate) and (2) deliver near 100% endpoint transmission of the light signal to a POF or single mode fiber optic or multimode fiber optic on the IC frontside. The invention can be more generally designed to optically isolate any wavelength of interest (such as λ=1550 nm for example, a wavelength of particular interest to optical interconnect applications); for our particular application, light emission into a POF 12 or single mode fiber optic or multimode fiber optic, we will consider a spectral wavelength range between λ=640-860 nm which is compatible with low POF or single mode fiber optic or multimode fiber optic transmission. We will present a specific design for a λ=850 nm VCSEL light source.

The invention can be more generally designed to deliver near 100% endpoint transmission to an arbitrary structure on the IC frontside, such as a lens collection system or even free space transmission. For our particular application, we will consider endpoint transmission into a POF or single mode fiber optic or multimode fiber optic on the IC frontside.

Most frontside of a high-speed IC chip 2 include a SiO₂ layer 4, as shown in FIG. 2A. The terminating end of the deep-RIE air-via 6 therefore opens to the underside of a SiO₂ insulator layer 4. Photodetectors 8, 10 receive an incoming signal from a POF 12 or single mode fiber optic or multimode fiber optic. The sidewalls 14, 16 of deep-RIE air-via 6 comprise Si. On the backside of the high IC chip 2 is a VCSEL providing an optical signal to the air-via 6. The invention can be generally designed to transmit light through an air-via of any arbitrary size; for our particular application, the air-via has been designed to be a tapered cylindrical hole, varying in diameter size from 70 µm to 20 µm.

A conventional waveguide can confine and guide light along a high refractive index (n₂) core material, surrounded by a lower refractive index (n₁) cladding material. Amongst the materials systems utilized in Si CMOS-compatible processing, Si and Germanium (Ge) have the two highest refractive indices. At λ=850 nm, Ge has a refractive index of 4, a higher value than the refractive index of Si (3.5); however, λ=850 nm corresponds to a photon energy above the bandgap of Ge, and the bandgap of Si. If a light signal is to be guided from the backside of a Si wafer to the frontside with negligible absorption loss, an alternate waveguiding mechanism is required.

A photonic crystal waveguide optically confines and guides a λ=850 nm light signal with an exponential decay of signal power into a Si substrate. Given that λ=850 nm is a photon with energy larger than the bandgap of Si, it is imperative to strongly confine the light signal away from the Si substrate—i.e., to effectively isolate the light signal within the air-via. The exponential decay of light outside the Bragg cladding of a photonic crystal waveguide helps insures this requirement. If a significant amount of the λ=850 nm light signal were absorbed into the Si substrate, the photo-generated excess electron-hole pairs would create a background noise current degrading IC performance and potential cross-talk to the photodetectors 8, 10 that receive an incoming signal from the plastic optical fiber POF 12 or single mode fiber optic or multimode fiber optic.

With a photonic crystal waveguide 30, periodic layers of silicon oxynitride (SiON), silicon nitride (Si₃N₄) 22 and silicon oxide (SiO₂) 24 can be deposited as a Bragg reflector, or 1-D photonic crystal, conformally covering the surface of a deep-reactive ion etched (RIE) air-via 26, as shown in FIG. 2B. The resulting inventive structure will confine the λ=850 nm light signal within an air defect or air-via 26 and propagate the signal along the axial direction. The periodic SiON/SiO₂ or Si₃N₄/SiO₂ pairs 30 will here onwards be referred to as the Bragg cladding 30. The inventive structure can be more generally composed of any two materials where the first material has a higher refractive than the second material; the two materials can be either insulator (ceramic or polymer), semiconductor or metal materials class. For our particular application, we will make use of the SiON/SiO₂ or Si₃N₄/SiO₂ Bragg cladding 30 system.

Conformal coverage of the air-via’s surface by the Bragg cladding 30 would also cover the air-via terminating end 28. The same principal of omnidirectional reflectivity which isolates the λ=850 nm light signal to the air-via 26 will also impede endpoint transmission, defined here as the transmission of λ=850 nm light from the air-via 26, through the Bragg cladding 30 and into the SiO₂ frontside. This design will create a high insertion loss into the POF 12 or single mode fiber optic or multimode fiber optic.

However, the modified photonic crystal waveguide design of the invention, which illustrates a partial confinement photonic crystal waveguide, can simultaneously isolate and guide the λ=850 nm light signal through the air-via 26 while ensuring near-100% endpoint transmission into a POF 12 or single mode fiber optic or multimode fiber optic.

As FIG. 2B indicates, the propagation constant β corresponds to the horizontal projection of the light signal wavevector (of magnitude k₀), i.e.

\[
\beta = k₀ \cos \theta,
\]

where \(\theta \) is the angle the wavevector makes with the horizontal axis. The numerical aperture NA of a waveguide or light source describes the maximum angular spread of light wavevectors about the horizontal axis, and is defined

\[
N_{\text{Amax}} = \theta.
\]

In the example case, the light source has a numerical aperture of NA=0.2 at λ=850 nm, therefore the isolation and guiding of this light signal along the air-via 26 requires photonic crystal waveguide based confinement only for the range of propagation constants, \(\beta = k₀ \cos (\sin^{-1}(0.2)) \), corresponding to the NA range NA=0→0.2. This range of β-values have been labeled in FIG. 3 for TE modes, where one sees that a waveguide design is possible for which this range of β lie within the photonic bandgap, while a range of β-values close to β=0, lie within the low dielectric band.

One can define such a waveguide, which guides and confines only a partial range of β-values, for a given wavelength of light λ (in this particular case λ=850 nm), as the partial confinement photonic crystal waveguide.

If the POF or single mode fiber optic or multimode fiber optic light signal λ=850 nm travels along such a partial confinement photonic crystal waveguide—specifically, the 20-70 µm diameter air-via, conformally covered with an SiON/SiO₂ or Si₃N₄/SiO₂ Bragg cladding, whose thickness match with the structure in the photonic band diagram of FIG. 3—one can
observe a crucial effect at the terminating end of the air-via
26: near 100% transmission of the signal into the SiO₂ front-
side.

As FIG. 3 indicates, waveguiding signals (with propagation
constant β) incident on the terminating end of the air-via
will optically interact with a Bragg cladding geometry which
is orthogonal to the Bragg cladding which coats the 500 μm
length of air-via. Rotating the geometry by 90° in this man-
ner is akin to re-assigning new propagation constant values β’
to the light signal, with respect to the Bragg reflector coating
the terminating end:

$$\beta' = \sqrt{\beta^2 - k_0^2}.$$
Eq. 3

On the photonic band diagram in FIG. 3, one can see this
re-mapping of propagation constants from large β-values to
small β’-values results in a transformation from states lying
within the photonic bandgap to states lying within the low
dielectric band. At the terminating end of the air-via, the 90°
rotation of a partial confinement photonic crystal waveguide
transforms the structure from an optically isolating and guid-
ing device into a transmission device. The partial confinement
photonic crystal waveguide is therefore a monolithic integra-
tion compatible structure which can simultaneously guide a
λ≈850 nm light signal and provide endpoint transmission into
the POF or single mode fiber optic or multimode fiber optic.

Typical etch patterns for air-vias in this project have been
even of cylindrical symmetry: 1-D structures are examined for
both TE and TM modes of light, in order to design a structure
which accommodates arbitrary light signal polarization.

Photonic band diagrams describe the optical properties of
light interacting with Bragg grating structures which are infi-
nitely long. In practice, a finite number of SiON/SiO₂ or
Si₃N₄/SiO₂ pairs will be conformally deposited within the
etched air-via. In order to finalize the inventive design a more
accurate characterization of photonic crystal waveguide
propagation and endpoint transmission is done by studying the
TE and TM reflectivity properties of finite-pair Bragg
cladings in FIG. 4, FIG. 7 and FIG. 8.

Unlike the total internal reflection-based confinement
properties of conventional waveguides, which imply a theo-
retically lossless propagation of light along the high refractive
index waveguide core, the less-than-unity reflectivity of pho-
tonic crystal waveguides imply the presence of a theoretical
propagation loss, per unit length, which reduces with more
Bragg reflector pairs.

The higher the refractive index contrast between the two
Bragg pair materials, the fewer pairs are required to achieve
a given amount of reflectivity, which corresponds in turn to a
given amount of waveguide propagation loss (dB/cm units).

The conformal-covering SiON/SiO₂ or Si₃N₄/SiO₂ Bragg
pairs will be deposited within the air-via by a CVD process.
One needs to determine what would be an acceptable number
of Bragg pairs to deposit.

One nominal approach is to design a square wave profile
with Bragg pairs comprised of alternating layers of Si₃N₄
(n₂=2.2) and SiO₂ (n₁=1.453) with layer thickness values
modified from the quarter-wavelength condition (λ₁=180 nm
and λ₂=115 nm), in order to have a partial confinement struc-
ture.

The VCSEL light source to be utilized in this POF or single
mode fiber optic or multimode fiber optic link has a numerical
aperture of NA=0.2, corresponding to a divergence angle of
θ=11.54°. Along the length of the air-via, this implies that
modes of propagating light will be incident on the Bragg
reflector cladding at angles, with respect to the normal, rang-
ing between θ=78.46° to 90°. FIGS. 4A-4B show the TE
reflectivity at θ=78.46° for 6 and 8 Si₃N₄/SiO₂ Bragg pairs.

FIG. 5 summarizes these reflectivity values as a propagation
losses α (dB/cm), versus #Bragg pairs. The relationship
between reflectivity (for the light signal λ≈850 nm) at an
angle θ, Rₚ, and α is

$$\alpha = \frac{1}{d} \left(\frac{1}{\sqrt{\frac{1}{\sin^2 \theta} - 1}} \right) \left(\frac{1}{R_p} \right).$$
Eq. 4

One can observe that TM modes are considerably more
lossy than TE modes, and that with 8 Bragg pairs one can
achieve a propagation loss on the order of 10 dB/cm. Along
an air-via of length 500 μm, this corresponds to a loss of 0.5 dB,
i.e. a loss of 11% in power to the Si substrate as the light signal
propagates along the air-via.

However, this square wave profile design cannot provide
reliable endpoint transmission. A finite number of Bragg pairs
results in a transition from photonic bandgap (or reflectivity
stopband) to low dielectric bands (or reflectivity passband)
which is not abrupt. Reflectivity sidelobes surround the stop-
bands, as shown in FIGS. 4C-4D, which can not be controlla-
ecessarily tailored, with the −5% thickness error margin possible in
CVD deposition.

FIGS. 4C-4D show the reflectivity as seen by light
wavevectors with the divergence angle θ≈11.54° with respect
to the horizontal (for TE and TM modes). One can observe
that at the terminating end of the air-via, the reflectivity side-
lobes for this incidence angle tend to create significant re-
flcetance, potentially as high as 40-50%, at λ≈850 nm. This is a
large insertion loss into the POF or single mode fiber optic or
multimode fiber optic, and an up to 50% reflection of power
back into the VCSEL light source can cause potential laser
degradation. A more robust design is needed which assures
high endpoint transmission, subject to a 5% film thickness
error margin for the Bragg pairs.

Apodization is a transmission processing design which
imparts a slowly varying profile to a Bragg grating. The result
has the effect of dramatically smoothening out reflectivity
sidelobes, if the profile significantly weakens the grating
strength near its edges. FIGS. 6A-6B shows the apodized
profile applied to a partial confinement photonic crystal
waveguide: the Si₃N₄ layers have been altered into silicon
oxide-nitride (SiON) layers with refractive indices intermediate
to Si₃N₄ and SiO₂. FIG. 6A shows an apodized profile for the
partial confinement photonic crystal waveguide, conformally
deposited on the Si sidewalls of the air-via for light signal
isolation and propagation. FIG. 6B shows the an apodized
profile for the partial confinement photonic crystal
waveguide, conformally deposited on the oxide on the air-via
terminating end, for endpoint transmission. Each SiON layer,
with its given refractive index, has been designed to be a
quarter wavelength thickness (normalized with respect to its
refractive index value) for a wavelength λₙₜ₉ₚₜₛ (“center” refers
to this wavelength being at the center of the reflectivity stop-
bands) slightly larger than λ≈850 nm. The refractive index
and film thicknesses of all the layers are summarized in Table 1.

FIGS. 7A-7B and FIGS. 8A-8B show the reflectivity spec-
trum as seen at θ=78.46° and θ=90° along the air-via, for TE
and TM modes, respectively. These two θ-angles form the
divergence boundary values for wavevectors of the λ≈850 nm
light signal emerging from a VCSEL with numerical aperture
NA≈0.2. It is observe that, similar to the square wave profile
design, one can achieve reasonable propagation loss for both
TE and TM modes along the air-via.

At the terminating end, the robust effect of the apodized
profile on insertion loss is observed: a reduction in reflected
power to below 5%. FIGS. 7C-7D and FIGS. 8C-8D show the reflectivity and endpoint transmission observed by light wavevectors traveling with incidence angles θ=11.54°, 0° (i.e. after the 90° orthogonal rotation, incidence angles get re-mapped as 78.46°→11.54°, 90°→0°). With this data there is a complete quantitative model of propagation loss and endpoint transmission, as summarized in FIGS. 9A-9D, for the angles θ=0°, 11.54° bounding the NA~0.2 angular emission range.

The apodized profile partial confinement photonic crystal waveguide, as specified in FIGS. 6A-6B, comprised of 7.5 pairs of SiON/SiO₂, will optimally achieve optical isolation/waveguiding of the VCSEL light signal and endpoint transmission into the POF or single mode fiber optic or multimode fiber optic. The propagating states of light available within the air-via are highly multi-mode; the number of propagating modes within air-via depends on the diameter size, which ranges from d=20-70 μm. The mode number is computed by determining the number of standing wave states (states corresponding to β=0) that can exist within the photonic bandgap, and realizing that each one of these standing wave states connects by continuity of a dispersion relation to a propagating state within the air-via (i.e. the defect layer). The number of standing wave states is computed by dividing the photonic bandgap width by the free spectral range of the defect layer, in frequency units:

\[
\text{# modes} = \frac{\text{bandgap}}{\text{FSR}} = \frac{\Delta \omega}{\omega_{\text{cen}}} = \frac{8d\Delta \omega}{\lambda_{\text{cen}} n_{\text{eff}}}, \tag{5}
\]

where d is the air-via diameter and λ_{cen} is the center of the stopband (λ_{cen}>850 nm).

The emitting VCSEL light signal will optimally overlap into the lower order modes and carry power, without modal cross-talk, to the frontside photodetector.

Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.

What is claimed is:

1. An optical waveguide structure comprising:
 - an air-via region that receives an optical signal from an optical source;
 - a plurality of first photonic crystal cladding regions that are formed on the surface of said air-via region, wherein said photonic crystal cladding regions confines the optical signal within said air-via region and propagates the optical signal along the axial direction while ensuring near complete transmission of said optical signal; and
 - a second photonic cladding region being positioned orthogonally to said first photonic crystal cladding regions providing endpoint transmission into an optical fiber structure.

2. The optical waveguide structure of claim 1, wherein said photonic crystal comprises a Bragg cladding.

3. The optical waveguide structure of claim 2, wherein said Bragg grating comprises alternating pairs of SiON/SiO₂ or SiN₃SiO₂.

4. The optical waveguide structure of claim 2, wherein said Bragg grating provides complete reflection for light at incident angles greater than 45° with respect to a normal.

5. The optical waveguide structure of claim 2, wherein said Bragg grating provides complete transmission for light at incident angles less than 45° with respect to the normal.

6. The optical waveguide structure of claim 1, wherein said air-via region comprises a diameter of 20-70 μm.

7. The optical waveguide structure of claim 1, wherein said optical signal comprises a λ=640-860 nm light signal.

8. The optical waveguide structure of claim 1, wherein said photonic crystal cladding is defined using apodization.

9. The optical waveguide structure of claim 1, wherein said optical fiber comprises a plastic optical fiber (POF) or single mode fiber optic or multimode fiber optic.

10. A monolithical optical structure comprising:
 - an air-via region that receives an optical signal from an optical source;
 - a plurality of first photonic crystal cladding regions that are formed on the surface of said air-via region, wherein said photonic crystal cladding regions confines the optical signal within said air-via region and propagates the optical signal along the axial direction while ensuring near complete transmission of said optical signal; and
 - a second photonic cladding region being positioned orthogonally to said first photonic crystal cladding regions providing endpoint transmission into an optical fiber structure.

11. The monolithical optical structure of claim 10, wherein said photonic crystal comprises a Bragg cladding.

12. The monolithical optical structure of claim 11, wherein said Bragg grating comprises alternating pairs of SiON/SiO₂ or SiN₃SiO₂.

13. The monolithical optical structure of claim 11, wherein said Bragg grating provides complete reflection for light at incident angles greater than 45° with respect to a normal.

14. The monolithical optical structure of claim 11, wherein said Bragg grating provides complete transmission for light at incident angles less than 45° with respect to the normal.

15. The monolithical optical structure of claim 10, wherein said air-via region comprises a diameter of 20-70 μm.

16. The monolithical optical structure of claim 10, wherein said optical signal comprises a λ=640-860 nm light signal.

17. The monolithical optical structure of claim 10, wherein said photonic crystal cladding is defined using apodization.

18. The monolithical optical structure of claim 10, wherein said optical fiber comprises a plastic optical fiber (POF) or single mode fiber optic or multimode fiber optic.

19. A method of forming a waveguide structure comprising:
 - providing an air-via region that receives an optical signal from an optical source;
 - forming a plurality of first photonic crystal cladding regions on the surface of said air-via region, wherein said photonic crystal cladding regions confines the optical signal within said air-via region and propagates the optical signal along the axial direction while ensuring near complete transmission of said optical signal; and
 - forming a second photonic cladding region being positioned orthogonally to said first photonic crystal cladding regions providing endpoint transmission into an optical fiber structure.

20. The method of claim 19, wherein said photonic crystal comprises a Bragg cladding.

21. The method of claim 20, wherein said Bragg grating comprises alternating pairs of SiON/SiO₂ or SiN₃SiO₂.

22. The method of claim 20, wherein said Bragg grating provides complete reflection for light at incident angles greater than 45° with respect to a normal.
23. The method of claim 20, wherein said Bragg grating provides complete transmission for light at incident angles less than 45° with respect to the normal.

24. The method of claim 19, wherein said air-via region comprises a diameter of 20-70 μm.

25. The method of claim 19, wherein said optical signal comprises a λ=640-860 nm light signal.

26. The method of claim 19, wherein said photonic crystal cladding is defined using apodization.

27. The method of claim 19, wherein said optical fiber comprises a plastic optical fiber (POF) or single mode fiber optic or multimode fiber optic.