M2C3 Project

Making Picture Frames Task Student Work

This file includes different organizational charts and solution paths for students in grades 3,4 , and 5 . Students used whole number addition, multiplication, and division to determine the number of packages of popsicle sticks needed to make picture frames for their loved ones.

Factors that Students Considered

- What the design and size of the picture frame will be
- How many popsicle sticks are required for each frame
- How the frame would be displayed (hung or standing on table) and how this affected other materials needed (e.g. magnets, ribbon)

Connections to Students' Experiences

- Having an ofrenda or other picture display area to celebrate family and loved ones.
- Creating frames and giving them as gifts to others.
- Using popsicle sticks as craft materials

Sketch your Picture Frame here:

1. How many popsicle sticks do you need to make 1 frame?

2. What other materials do you need to make 1 frame? How many magnets? 4
How many rubber bands?
How much ribbon? 1

Warm-up: Making Sense of the Task

Grade 3 students drew a design of their picture frame and identified the number and type of popsicle sticks required to construct it. There were two types of sticks: jumbo and multi-colored. Students also identified other materials they would need. This group needed 8 jumbo sticks, 4 multi-colored sticks, 4 magnets, and one piece of ribbon.

What do you Know, Need to Know, Assume?

Grade 4 students made sense of the task by brainstorming a chart of what they knew, what they needed to know or find out, and what they could assume.
This class recognized that one of their questions in the 'need to know' column could be answered by gathering more information about the materials they were using.

What do you Know, Need to Know, Assume?

Grade 5 students decided that everyone would make two frames so that there would be enough for all the veterans to whom they were giving them. They asked questions about their designs to ensure there would be enough supplies, accounting for unusable sticks.

Grade 3 Solution

This group of students completed a table to clearly share the total number of sticks and packages needed so that all 23 students in the class could make one frame. They also calculated how many sticks would be left over.

DESCRIBE YOUR FRAME: \qquad
How many of this frame will you make? 23

	How many sticks for one frame?	How many sticks for all the frames?	How many packages do we need?	How many sticks leftover?
Plain Jumbe Sticks				
Multi-Color Sticks				

Grade 4 Solution

These students used a graphic organizer to list relevant information and show their work. They decomposed 26 (the number of students in the class) into 20 and 6 and multiplied these numbers by 8 (the number of jumbo sticks required by their frame). They determined 208 sticks, or 4 packages, are required with 32 leftover sticks.

Grade 5 Solution

47810 These students used equations and pictures to calculate how many packages of sticks and rubber bands they needed for 36 frames. They subtracted from the total number of materials they needed to buy to find out how much would be left over.

This class designed two frames. This solution shows that one frame required 12 sticks and the other 14. The students wrote an expression to represent the frames, using parentheses to group operations for each frame component. Then they calculated how many total sticks are needed for all 27 students across both frame designs: 9 packages of jumbo sticks and 2 of the multi-colored sticks.

Can you write an expression to communicate your plan mathematically for each
frame? Frame 1:
$(3 \times 3)+(2 \times 2)+(1 \times 2)$ Frame 2:

Suppose we want everyone in the class to make both of your frames. How would you alter your expression to accommodate everyone in the class?

Analyzing and
 Comparing Solutions

This third-grade class made a chart to compare and analyze solutions after all groups completed the task. The chart showed the number of each type of stick, the packages required, and how many sticks were left over. Students noticed what was different or the same across solutions. All frame designs included a stand and two solutions required the same number of jumbo sticks. Other solutions needed different amounts.

Created Frames

This fifth-grade class shared their completed frames, which they planned to give to their family members. Some had stands and others used ribbon as hangers. A couple frames (bottom right) were created to display two photos at once!

