

Formation, Characterization, and Application of Gas-Phase, Multiply Charged Reverse Micelles

Jianbo Liu*, Yigang Fang, William Pineors Department of Chemistry, Queens College & The Graduate Center of the City University of New York

Spring 2010 ACS Meeting, San Francisco

March 25, 2010

Reverse Micelles (RMs)

One of the most interesting nanometersized structures

- selective encapsulation/solubilization
- ✤ catalysis
- * membrane-mimetic system

NaAOT, sodium bis(2-ethylhexyl) sulfosuccinate, a surfactant molecule commonly used for making RMs

Formation of Gas-Phase RM

Approach

In Nature (marine aerosols)

1. Formation of aerosol particles at the sea surface

3. RM in the gas-phase, maintaining encapsulated minerals and small organics

C. M. Dobson, G. B. Ellison, A. F. Tuck, V. Vaida. PNAS, 97, 11864 (2000)

Reverse micellecontained droplets Nano-electrospravionization of micelle solution

Y. Fang, A. Bennett, J. Liu, Int J Mass Spectrom. , in press (2010)

In Laboratory

Instrument: ESI Guided-Ion-Beam Tandem Mass Spectrometer

Part I Formation of Gas-Phase AOT RM & Encapsulation of Gly

m/z

Size Dependence of Gas-Phase RM Encapsulation

Aggregation number n	Core diameter (nm)	Max. number of Gly encapsulated in RM
n < 13		0
n ≥ 13	1.4	1
n ≥ 16	1.6	2
n ≥ 17	1.7	3
n ≥ 21	1.9	4
n ≥ 24	2.1	5

Core diameter: $D = \sqrt{n \times A / \pi}$

A is the area of the AOT polar head (0.52 nm²)

Size of Gly: 0.6-0.7 nm

Collision-Induced Dissociation (CID) Cross Section As a Function of E_{col}

Empty gas-phase RM

 $\sigma_{HS} = \pi \cdot (r_1 + r_2)^2$

At highest E_{col} , σ_{cid} is approaching the hard-sphere collision limit \rightarrow

Another piece of evidence that gas-phase AOT forms spherical reverse micellar structure

Part IIDriving Forces for Solubilization:
Electrostatic vs. Hydrophobic

In Solution-Phase RM

Hydrophilic biomolecule (e.g. Gly, TrpH⁺) located in the internal core — electrostatic interaction

Hydrophobic biomolecule (e.g. neutral Trp) located at the interface — hydrophobic interaction

P. L. Luisi, M. Giomini, M. P. Pileni, B. H. Robinson, Biochimica et Biophysica Acta, 947, 209(1988)

Driving Force for Solubilization in Gas-Phase RM?

Top:

RM occupied with protonated TrpH⁺

Bottom:

RM occupied with neutral Trp (hydrophobic)

Probing Guest Molecule Location Using CID: *Encapsulation Inside* vs. *Attached to the Interface*

Part III Selectivity Between Two AAs Case (1): Aspartic Acid vs. Tryptophan

ESI of AOT/Asp

ESI of AOT/Asp+Trp

Case (2): Arginine vs. Tryptophan

no encapsulation of Trp

Fundamentals of Selectivity

	Aspartic acid (D)	Tryptophan (W)	Proline (P)	Arginine (R)
pK_a of α -COOH	1.9	2.8	2.0	2.2
pK_a of α -NH ₃ +	9.6	9.4	10.6	9.0
<i>pK_a</i> of acidic R	3.7	-	-	12.5
pl	2.8	5.9	6.3	10.8

pH of ESI solution of AOT/(Trp + Asp) in methanol/water = 5.1

pH of ESI solution of AOT/(Trp + Arg) in methanol/water = 7.4

Selectivity between different AAs?

 Selectivity reflects a competition between electrostatic and hydrophobic forces, which can be tuned up by changing the pH of ESI solution.

• Amino acid with a higher *pl* exists in protonated form and has a larger affinity with AOT⁻

(i.e. Arg > Trp > Asp

✤ NaAOT surfactants are able to form RM in the gas phase.

Gas-phase RM can act as nanometer-sized vehicle for selective transport of non-volatile biomolecules into the gas phase.

Driving force for solubilization: electrostatic & hydrophobic interactions.

Application in Analytical Chemistry:

Separation and Direct Determination of ionic and neutral amino acids in solution.

Acknowledgements

ACS-PRF Grant CUNY Collaboration Grant QC Research Enhancement Funds