

Gas-Phase Micellar Assemblies:

Charge-State Dependence of Micellar Structures and Its Applications

Jianbo Liu* (jianbo.liu@qc.cuny.edu),Yigang Fang, and Fangwei Liu Department of Chemistry & Biochemistry Queens College and the Graduate Center of CUNY, Queens, NY 11367

I. Motivation

Generate micelles in the gas phase, and use them as nano-sized carriers/reactors to study chemistry of biomolecules solvated in gas-phase membrane-mimetic environments.

II. Apparatus & Methods

ESI Guided-Ion-Beam Tandem Mass Spectrometer

ESI of NaAOT solution, followed by1) transfer of existing micelles to the gas phase, and2) self-assembling of surfactants into micellarassemblies in the gas phase

III. Results

I Formation of Multiply Positively-Charged NaAOT Reverse Micelles in The Gas Phase

2 Reverse-Micellar Structure & Encapsulation of Glycine

Size dependence of gas-phase RM encapsulation

3 Driving Forces for Incorporating Hydrophilic vs. Hydrophobic Amino Acids

4 How Does Charge State Affect Micellar Structures & Encapsulation ?

↓ Encapsulation of hydrophilic Gly vs. hydrophobic Trp in ⊖ charged micelles

RM aggregation number	Max. number of Gly encapsulated	Core diameter D (nm)
n < 13	0	
n ≥ 13	1	1.4
n ≥ 16	2	1.6
n ≥ 17	3	1.7
n ≥ 21	4	1.9
n ≥ 24	5	2.1

♦ Core dia. D = $\sqrt{n \times AOT \text{ polar head } (0.52 \text{ nm}^2)/\pi}$ ♦ Size of Gly: 0.6 - 0.7 nm

- The max. number of encapsulated Gly correlates with micellar core size.
- CID of mass-selected Gly-encapsulating micellar ions

 CID leads to breakdown of micellar aggregates, in order to eject encapsulated Gly

Gly is confined within the internal core of reverse micelle. Gas-phase reverse micelles have higher affinity toward protonated tryptophan WH⁺

↓ Use CID to probe site locations of WH⁺ and W in reverse micelles

CID of WH⁺ containing reverse micelle leads to breakdown of micellar structure
CID of W-containing reverse micelle lead to stripping only W off the micelle

CID of mass-selected charged micelles containing Gly (left) or Trp (right)

☆ These imply different encapsulation behaviors of ⊕ and ⊖ charged NaAOT micelles, as indicated by cartoons inserted in the figures.

WH* is encapsulated inside micellar core via electrostatic effects;
W is intercalated between AOTs via hydrophobic & electrostatic effects.

Direct micelle-like structure for Charged micellar assembly

5 Step towards Generate Aqueous Solution in The Gas Phase

↑ ESI mass spectrum of NaAOT/water in negative ion mode

IV. Conclusions

NaAOT surfactants are able to self-assemble into highly-ordered micellar structures in the gas phase.

Charge state affects micellar structure in the gas phase.

Positively charged aggregates form a reverse micelle-like structure, while negatively charged aggregates adopt a direct micelle-like structure. Amino acids can be selectively encapsulated and transported by NaAOT reverse and direct micelles.

Future Directions

Assembling of "Aqueous Solution" in gas-phase NaAOT micelles

Reactions of single biomolecules encapsulation in gas-phase bio-membrane mimetic systems

- Y. Fang, F. Liu, and J. Liu, "Mass spectrometry study of negatively charged, gas-phase NaAOT micelles: How does charge state affect micellar structure in the gas phase?", J. Am. Soc. Mass Spectrom. 2013, 24, 9.
- Y. Fang, A. Bennett, and J. Liu, "Selective transport of amino acids into the gas phase: Driving forces for amino acid solubilization in gas-phase reverse micelles", PCCP, 2011, 13, 1466.
- Y. Fang, A. Bennett, and J. Liu, "Multiply charged gas-phase NaAOT reverse micelles: Formation, encapsulation of glycine, and collision-induced dissociation", Int. J. Mass Spectrom., 2010, 293, 12.

Acknowledgements

PSC-CUNY Awards QC Research Enhancement Funds