

Mass Spectrometry Study of Histidine Oxidation by ¹O₂:

from Gas-Phase Single Ions
through Water Clusters
to Aqueous Solution

Jianbo Liu, Fangwei Liu, Wenchao Lu, Vincent Yin Department of Chemistry & Biochemistry Queens College and the Graduate Center of CUNY

Biosystems

- Enzymatic or nonenzymatic
- Radical termination
- Energy transfer from protein-bound chromophores

- Progression of cell death
- Aging and diseases
- Photodynamic therapy

- atmospheric aerosols
- Chemical markers

Photooxidation of Amino Acids

Our Approaches

1. GAS-PHASE REACTIONS of Amino Acid Ions with Clean ¹O₂

- Distinguish intrinsic *vs.* external imposed properties of biomolecules
- Complemented by and compared with MD simulations

2. MICROSOLVATION of Amino Acid Reactant Ions in the Gas Phase

 Dynamical roles of hydrogenbounded waters

How We Run Reactions of His Ions with ¹O₂

Generation & Detection of ¹O₂

❖ Chemical ¹O₂ generator

$$2H_2O_2 + Cl_2 + 2KOH \xrightarrow{-21^{\circ}C} {}^{1}O_2/{}^{3}O_2 + 2KCl + 2H_2O$$

Emission detection

$$O_2(^1\Delta_g) \xrightarrow{Emission} O_2(^3\Sigma_g^-) + hv (1270 nm)$$

Gas-Phase Exp 1. ¹O₂ Oxidation of Protonated and Deprotonated His in the Gas Phase

Gas-Phase Exp 1. ¹O₂ Oxidation of Protonated and Deprotonated His in the Gas Phase

No oxidation products were observed. Gas-phase isolated His cannot be oxidized by ¹O₂

Why Is Gas-Phase Isolated His Non-Reactive?

Make Gas-Phase Experiments More Biologically Relevant

Use Hydrated Clusters to Approach Solution-Phase Oxidation Behaviors

Gas-Phase Exp 2. Reactions of ${}^{1}O_{2}$ with Hydrated HisH ${}^{+}(H_{2}O)_{n}$ and [His-H] ${}^{-}(H_{2}O)_{n}$

Hydration effect: Suppression of Dissociative Pathways of Peroxide Intermediates by Water Cluster Dissociation

Dynamical Role of Water:

Direct Dynamics Trajectory of [His-H]⁻(H₂O) + ${}^{1}O_{2}$ at E_{col} = 0.1 eV

Using Venus/Gaussian 09, w/ forces and Hessians calculated at B3LYP/4-31G*

Use Hydrated Clusters to Mimic pH-Dependence of Photooxidation

Photooxidation of His in solution

Reaction of hydrated His in the gas phase

I. B. C. Matheson and J. Lee, *Photochem. Photobiol.*, 1979, **29**, 879.

Gas-phase solvated clusters provide a platform to elucidate intrinsic reactivity of biomolecules *in vacuo*.

Can these results can be extrapolated to condensed phase?

Exp 3: On-Line Reaction Monitoring of His + ¹O₂ (w/o sensitizers) in Aqueous Solution

UV-Vis Kinetics Analysis of $His + {}^{1}O_{2}$ in Aqueous Solution

Real-time UV-Vis Monitoring

On-Line ESI MS of His + ¹O₂ in Aqueous solution

Time Profiles of Products

Conclusions: Non-Reactivity in the Gas Phase Peroxides in Water Clusters pH-Dependence in Solution

- ❖ A common process: endoperoxide via [4+2] cycloaddition, and rearrange to hydroperoxide.
- * Hydration effect: suppression of intermediate dissociative pathways and production of stable peroxide products.
- * Contrasting mechanisms of *protonated* vs. *deprotonated* His lead to pH dependence in solution

$$HisH^+ + {}^1O_2 \xrightarrow{gas\ phase} 2,5$$
-endoperoxide $\xrightarrow{ring-opening} 5$ -hydroperoxide $\xrightarrow{in\ solution}$ stable hydrated imidazole

VS.

$$[His-H]^- + {}^1O_2 \xrightarrow{gas\ phase} 2,4$$
-endoperoxide $\xrightarrow{ring-opening} 2$ -hydroperoxide $\xrightarrow{in\ solution}$ hydrated imidazolone

- \rightarrow 6 α -hydoxy-2-oxo-octahydro-pyrrolo[2,3-d] imidazole-5-carboxylate + His-His cross-linking.
- * Biological Implications

 pK_a (imidazole) 6.04, His exists in neutral/protonated/deprotonated forms at physiological pH $^{1}O_2$ oxidation of the guanine moiety of DNA

Acknowledgements

Ph.D. Students

Yigang Fang

Fangwei Liu

Wenchao Lu

Collaborators

Bill Hase (Texas Tech Univ)

Al Viggiano (AFRL)

Master's Students

Rifat Emre

Yun Chen

Undergraduate Students

Vicnent Yin

