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Our Approaches
1, GAS-PHASE REACTIONS of Amino Acid Ions with Clean 'O,

* Distinguish intrinsic vs. external

imposed properties of biomolecules
« Complemented by and compared
with MD simulations

''''''

* Dynamical roles of hydrogen-
bounded waters




How We Run Reactions of His Ions with 10,
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Generation & Detection of 10,

Ye* =
L
7

» Chemical 'O, generator

2H,0,+CL+2KOH —2*“-'0,/°0, +2KCI+2H,0

Emission detection

O, (1Ag) Emission s, O, (32;) +hv (1270 nm)




Gas-Phase Exp 1.
10, Oxidation of Protonated and Deprotonated His
in the Gas Phase



Gas-Phase Exp 1.
10, Oxidation of Protonated and Deprotonated His
in the Gas Phase

No oxidation products were observed.
Gas-phase isolated His cannot be oxidized by 'O,



Potential Energy (eV)

Why Is Gas-Phase Isolated His Non-Reactive?
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Make Gas-Phase Experiments More Biologica

Relevant 1

Use Hydrated Clusters to
Approach Solution-Pha



Gas-Phase Exp 2. Reactions of 10, with

Hydrated HisH*(H,0), and [His-H] (H,0),,
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Hydration effect: Suppression of Dissociative Pathways
of Peroxide Intermediates by Water Cluster Dissociation

Potential Energy (eV)
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Dynamical Role of Water:
Direct Dynamics Trajectory of [His-H]-(H,O) + 'O, at E_; = 0.1 eV
Using Venus/Gaussian 09, w/ forces and Hessians calculated at BBLYP/4-31G*
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Use Hydrated Clusters to
Mimic pH-Dependence of P

Photooxidation of His Reaction of hydrated His
in solution in the gas phase
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Photochem. Photobiol., 1979, 29, 879.

Gas-phase solvated clusters provide a platform to elucidate intrinsic
reactivity of biomolecules in vacuo.
Can these results can be extrapolated to condensed phase?
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Exp 3: On-Line Reaction Monitoring of
His + 10, (w/o sensitizers) in Aqueous Solution
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UV-Vis Kinetics Analysis of
His + 10, in Aqueous S
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On-Line ESI MS of
His + 10, in Aqueous solution
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Conclusions: Non-Reactivity in the Gas Phase

Peroxides in Water Cluster

¢ A common process: endoperoxide via [4+2] cycloaddition, and rearrange to hydroperoxide.
¢ Hydration effect: suppression of intermediate dissociative pathways and production of stable peroxide products.

+¢ Contrasting mechanisms of protonated vs. deprotonated His lead to pH dependence in solution

. gas phase . ring—opening . insolution .
HisH* + 10, —— 2,5-endoperoxide > 5-hydroperoxide ————— stable hydrated imidazole

VS.

. gas phase . ring—opening . insolution N
[His-H]- + 10, — 2,4-endoperoxide 2-hydroperoxide —— hydrated imidazolone

— 60-hydoxy-2-oxo-octahydro-pyrrolo[2,3-d] imidazole-5-carboxylate + His-His cross-linking.
% Biological Implications
pK, (imidazole) 6.04, His exists in neutral/protonated/deprotonated forms at physiological pH

10, oxidation of the guanine moiety of DNA
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