Monitoring the Singlet O₂ Oxidation Kinetics of Guanine and 9-Methylguanine by Real-Time **Mass Spectrometry and Spectroscopy**

Wenchao Lu[#], Yan Sun, Jessie Zhou and Jianbo Liu* Department of Chemistry and Biochemistry, Queens College and the Graduate Center of CUNY 65-30 Kissena Blvd., Queens, NY 11367, USA

Introduction

- ${}^{1}O_{2}$: one of the most common endogenous reactive oxygen species (ROS) in live organisms, \bullet which may cause mutation and cell death.
- Guanine: the exclusive target toward ${}^{1}O_{2}$ oxidation.
- 9-Methylguanine: a commonly used prototype substrate of guanosine. \bullet

ÓH ÓH

Results

Literature proposed reaction mechanism of guanine $+ {}^{1}O_{2}$: •

C. Sheu and C. S. Foote, J. Am. Chem. Soc., 1993, 115, 10446-10447.

Our previous gas-phase studies have demonstrated the early-stage oxidation mechanism. \bullet W. Lu and J. Li*, Chem. Eur. J., 2016, 22, 3127-3138. W Lu, H Teng and J. Liu, Phys. Chem. Chem. Phys., 2016, 18, 15223-15234.

Instrumentation and Methodology

• Solution-Phase Reaction System and ¹O₂ Generator

Chemical ¹O₂ generator

Oxidation followed first-order reaction kinetics toward guanine/9MG and ${}^{1}O_{2}$.

Guanine	Rate constant, k (M ⁻¹ s ⁻¹)	Major products	9MG	Rate constant, k (M ⁻¹ s ⁻¹)	Major products
pH = 3	No reaction.	insignificant (< 0.01 %)	pH = 3		
Pure water	No reaction.	insignificant (< 0.01 %)	Pure water	1.2 × 10 ⁶	9MSp (45%), <i>gem</i> -9Mdiol (33%)
pH = 10	$3.2 - 3.6 \times 10^{7}$	Sp (70%), <i>gem</i> -diol (23%)	pH = 10	$4.6 - 4.9 \times 10^{7}$	9MSp (72%), 9MOG (19%)

Guided-Ion-Beam Tandem Mass Spectrometer

DFT-calculated reaction PES:

- $SMD-\omega B97XD/aug-cc-pVQZ//SMD-\omega B97XD/6-31+G(d,p)$ T2N N -600
- $\square_2 \mathbb{N}$ \mathbb{N}

- k_3 is rate-limiting.
- Calculated PES rationalizes that deprotonated guanine favors formation of Sp.
- For protonated guanine, the route leading to formation of Gh is blocked by early-stage barriers.

Conclusion

We conducted a combined kinetic and mechanistic study of guanine/9MG + ${}^{1}O_{2}$ in aqueous \bullet

solution using coupled mass spectrometry and UV absorption/emission spectroscopy. $^{1}O_{2}$

was generated using a chemical reaction separately to avoid interferences from oxygen

radicals. The oxidation showed strong pH dependence, with basic solution being the most

reactive with ${}^{1}O_{2}$. DFT calculations supported experimental results.

Acknowledgements

NSF (CHE-1464171) CUNY Mina Rees Dissertation Fellowship CUNY Doctoral Student Research Grant