Oxidation Dynamics of 8-Oxoguanine by Singlet O₂ Using Guided-Ion Beam Scattering and Density Functional Theory

Yan Sun[#], Wenchao Lu, and Jianbo Liu^{*} (Jianbo.Liu@qc.cuny.edu) Department of Chemistry and Biochemistry, Queens College and the Graduate Center of CUNY 65-30 Kissena Blvd., Queens, NY 11367, USA

Introduction

- Singlet oxygen $({}^{1}O_{2})$: one of the most • common reactive oxygen species in live organisms, and causes mutation and cell death.
- Guanine: the exclusive DNA target toward • $^{1}O_{2}$ oxidation.
- 8-Oxoguanine: more reactive toward ${}^{1}O_{2}$ than the undamaged guanine.

Results [Y. Sun, W. Lu and J. Liu, J. Phys. Chem. B. 2017, 121, 956-966.]

• Reaction PESs of protonated $[8-0xoG + H]^+$ with ${}^{1}O_{2}$

Literature proposed mechanisms of ${}^{1}O_{2}$ -induced oxidation of 8-oxodGuo: \bullet

Instrumentation and Methodology

a) Reaction coordinate for $[8-0xoG + H]^+ + {}^1O_2$. Energies (relative to reactants) were calculated at B3LYP/aug-cc-pVQZ//B3LYP/6-311++G(d,p), including thermal corrections at 298 K. b – d) 2D-PESs for the addition of ${}^{1}O_{2}$ to the C4 – C5, C2 – C5 and C2 – C4 positions of [8 $oxoG + H]^+$, respectively. Numbers in the contour maps are potential energies calculated at B3LYP/6-311++G(d,p). Colored lines represent IRC trajectories. e) IRC trajectory for hydrated $[8-0xoG + H]^+ \cdot W$

with ${}^{1}O_{2}$. Compared to dehydrated [8-oxoG + H]⁺, the activation barrier for 4,5-addition to [8 $oxoG + H]^+ \cdot W$ decreases by 0.32 eV whereas that for 2,5-addition increases by 0.07 eV.

Experimental Findings: No product was observed for the reaction of $[8-0xoG + H]^{+}(H_2O)_{0,1} + {}^1O_2$ because insurmountable barriers block the addition of ${}^{1}O_{2}$ to reactant ions.

• Reaction of deprotonated $[8-0xoG - H]^-$ with ${}^{1}O_{2}$

Guided-ion-beam tandem mass spectrometer [Y. Fang and J. Liu, J. Phys. Chem. A. 2009, 113, 11250-11261.]

• <u>10, Generation and detection</u> [Y. Fang, F. Liu, A. D. Bennett, S. Ara, and J. Liu. J. Phys. Chem. B. 2011, 115, 2671-2682.]

• Chemical ¹O₂ generator

Ð

6 -1.0

-1.5

-2.0

Experimental Findings: Neither is $[8-oxoG - H]^-$ reactive with 1O_2 , in this case due to the rapid decay of transient intermediates to starting reactants.

However, the nonreactivity of $[8-oxoG - H]^-$ toward 1O_2 is inverted by hydration of the reactant ions; as a result, 4,5-dioxetane of $[8-0xoG - H]^-$ was captured as the main oxidation product.

water dissociation energy (between 0.32 and 0.47 eV) which makes it possible to kick out a H_2O ligand.

• Determination of ¹O₂ concentration

 ${}^{1}O_{2}({}^{1}\Delta_{g}^{-}) \xrightarrow{Emission} {}^{3}O_{2}({}^{3}\Sigma_{g}) + hv(1270 nm)$

0.5 0. Collision Energy (eV)

• Similarities & differences between protonated vs. deprotonated system

The oxidation of $[8-0xoG + H]^+$ begins by concerted cycloaddition of 1O_2 , but all pathways are blocked by high activation barriers. On the contrary, synchronous addition does not occur to [8-oxoG – H]⁻. The latter involves a low-energy, stepwise addition starting with formation of a 5-terminal peroxide, followed by evolving into a 4,5dioxetane and a 5-hydroperoxide.

Compared to the dehydrated systems, hydration not only changes the stabilities of protonated 8-oxoG conformations, but "cools down" the energized oxidation intermediates of deprotonated 8-oxoG, suppressing their otherwise complete decomposition back to reactants.

Acknowledgement

Grant No. CHE-1464171

CUNY Doctoral Student Research Grant award