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Instrumentation and Methodology

• Guided-ion-beam tandem mass spectrometer [Y. Fang and J. Liu, J. Phys. Chem. A. 2009, 113, 11250-11261.] 

Results [Y. Sun, W. Lu and J. Liu, J. Phys. Chem. B. 2017, 121, 956-966.] 
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• Singlet oxygen (1O2): one of the most 
common reactive oxygen species in live 
organisms, and causes mutation and cell 
death.

• Guanine: the exclusive DNA target toward 
1O2 oxidation.

• 8-Oxoguanine: more reactive toward 1O2

than the undamaged guanine.
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• Literature proposed mechanisms of 1O2-induced oxidation of 8-oxodGuo:
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• Determination of 1O2 concentration
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• Chemical 1O2 generator

• 1O2 Generation and detection [Y. Fang, F. Liu, A. D. Bennett, S. Ara, and J. Liu. J. Phys. Chem. B. 2011, 115, 2671-2682.]

Reaction cross section (reaction) for [8-oxoG – H]-

W + 1O2 over the Ecol range of 0.1 to 0.5 eV, 
along with the reaction efficiency.
reaction increases with decreasing Ecol, indicating 
that this reaction is exothermic and there is no 
activation barrier above reactants.
The oxidation reaction enthalpy is larger than the 
water dissociation energy (between 0.32 and 0.47 
eV) which makes it possible to kick out a H2O 
ligand.

• Reaction of deprotonated [8-oxoG  H]- with 1O2

• Reaction PESs of protonated [8-oxoG + H]+ with 1O2

a) Reaction coordinate for [8-oxoG + H]+ + 1O2.  
Energies (relative to reactants) were calculated at 
B3LYP/aug-cc-pVQZ//B3LYP/6-311++G(d,p), 
including thermal corrections at 298 K. 
b  d) 2D-PESs for the addition of 1O2 to the C4 
 C5, C2  C5 and C2  C4 positions of [8-
oxoG + H]+, respectively.  Numbers in the 
contour maps are potential energies calculated at 
B3LYP/6-311++G(d,p).  Colored lines represent 
IRC trajectories.
e) IRC trajectory for hydrated [8-oxoG + H]+W 
with 1O2. Compared to dehydrated [8-oxoG + 
H]+, the activation barrier for 4,5-addition to [8-
oxoG + H]+W decreases by 0.32 eV whereas 
that for 2,5-addition increases by 0.07 eV. 

Experimental Findings: Neither is [8-oxoG − H]− reactive with 1O2, in this case due to the rapid decay of transient 
intermediates to starting reactants.  
However, the nonreactivity of [8-oxoG − H]− toward 1O2 is inverted by hydration of the reactant ions; as a result, 
4,5-dioxetane of [8-oxoG − H]− was captured as the main oxidation product. 

Guanine
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The oxidation of [8-oxoG + H]+ begins by concerted cycloaddition of 1O2, but all pathways are blocked by high 
activation barriers.  On the contrary, synchronous addition does not occur to [8-oxoG  H]-.  The latter involves a 
low-energy, stepwise addition starting with formation of a 5-terminal peroxide, followed by evolving into a 4,5-
dioxetane and a 5-hydroperoxide.
Compared to the dehydrated systems, hydration not only changes the stabilities of protonated 8-oxoG conformations, 
but cools down the energized oxidation intermediates of deprotonated 8-oxoG, suppressing their otherwise 
complete decomposition back to reactants.

• Similarities & differences between protonated vs. deprotonated system

e)

Experimental Findings: No product was observed for the reaction of [8-oxoG + H]+·(H2O)0,1 + 1O2 because 
insurmountable barriers block the addition of 1O2 to reactant ions.


