

Dynamics & Kinetics of ¹O₂–Induced Guanine Nucleoside Oxidation: A Combination of Potential Energy Surface, Kinetics Modeling, Dynamics Simulation & Guided-Ion-Beam Mass Spectrometry

Jianbo Liu Department of Chemistry & Biochemistry Queens College and the Graduate Center of the City University of New York

Singlet O₂ and DNA damage

https://nasa.tumblr.com/post/151016092994/why-sequencing-dna-in-space-is-a-big-deal

Guanine is the exclusive DNA target for ${}^{1}O_{2}$

- Mutation such as $G-C \rightarrow A-T$ transversion
- DNA-protein cross-link
- Cell death

Guanine oxidation mechanism and questions

2-a

R Grüber, A Monari, E. Dumont, JPC

Activation barrier and kinetics **Q**3

A approach different than solution-phase photooxidation

Guided-Ion-Beam Tandem Mass Spectrometer

5

1. What we wanted to do first was to capture reaction intermediates

RRKM analysis and implications

Direct dynamics simulation of guanine ion-beam scattering

simulated at B3LYP/6-31G*

Form a 5,8-endoperoxide rather
than a 4,8-endoperoxide that was proposed for neutral guanosine

Reactions of ${}^{1}O_{2}$ with $[G + H]^{+}(H_{2}O)$ and $[G - H]^{-}(H_{2}O)$

Capture of transient endoperoxides via water evaporation cooling

Experimental assessment of the activation barrier associated with O₂ addition to guanine

Wenchao Lu and J. Liu, Chem. Eur. J., 2016, 22, 3127-3138

2. More about O_2 addition mechanism: — A model study using 9MG

9-Methylguanine (9MG) has similar hydration, ionization, pK_a and reaction ΔH as guanosine

Wenchao Lu, Huayu Teng, and J. Liu, PCCP, 2016, 18, 15223-15234

pH-dependent ¹O₂ addition

[9MG + H]⁺ and [G + H]⁺: a concerted cycloaddition to a 5,8-endoperoxide different than neutral guanosine which leads to a 4,8-endoperoixde

Switches to stepwise addition upon deprotonation

 $[9MG - H]^{-} + {}^{1}O_{2}$:

- 1) Different than neutral guanosine in a stepwise addition
- 2) Different than [9MG + H]⁺ in 4,8-OO-[9MG - H]⁻ vs. 5,8-OO-9MG + H]⁺

3. From gas-phase dynamics to solution-phase kinetics and product distributions

Fangwei Liu, Wenchao Lu, Vincent Yin, and J. Liu, J. Am. Soc. Mass. Spec., 2016, 27, 59-72.

Kinetics of $9MG + {}^{1}O_{2}$

Solution-phase PES & kinetics

- Deprotonated guanine favors formation of Sp.
- Oxidation of protonated guanine is blocked by early-stage barriers.
- Initial ¹O₂ addition is rate-limiting.

Oxidation rate constant

$$-\frac{d[[9MG - H]^{-}]}{dt} = k_{I}^{-}[[9MG - H]^{-}][^{1}O_{2}]$$

 $ln [9MG - H]_{t}^{\circ} = \frac{product_{i}}{\sum_{i} (reactant + product_{i})} = -k_{i} - [^{1}O_{2}]_{ave} \cdot t$

Wenchao Lu, Yan Sun, Wenjing Zhou, and J Liu, JPC B, 2018, 122, 40-53

Summary

Gas phase				Aqueous solution		
	¹ O ₂ addition	Intermediates	Efficiency		End products	<i>k</i> ₁
protonated	concerted	5,8-endoperoxide	1.3%	рН 3	none	—
neutral	stepwise	4,8-endoperoxide		рН 7	9MSp, gem-9Mdiol, 9MGh, 9MGh ^{ox}	1.2 × 10 ⁶ M ⁻¹ ·s ⁻¹
deprotonated			1.7%	рН 10	9MSp, gem-9Mdiol, 9MGh, 9MGh ^{ox} , 9MOG	4.6 × 10 ⁷ M ⁻¹ ·s ⁻¹

Acknowledgements

Dr. Wenchao Lu Yan Sun Maida Tsai (collaborator, CUNY LGCC) Wenjing Zhou Bilal Karatash

CHE-1464171

Research Enhancement Funds

PSC Research Awards