Singlet O₂ Oxidation of 8-Oxo-2'-deoxyguanosine Radical Cation Using Guided-Ion Beam Tandem Mass Spectrometry and Multi-reference Computational Methods

<u>May Myat Moe</u>^{ab}, Jianbo Liu^{ab}

^aDepartment of Chemistry and Biochemistry, Queens College of the City University of New York ^bPh.D. Program in Chemistry, The Graduate Center of the City University of New York

Motivation

Nucleosides	Oxidation Potential (E° vs. NHE), V	Ionization Energy (eV)
8-oxo-2'-deoxyguanosine (OG)	0.58 - 0.74	6.38
Guanosine (Guo)	1.29	7.13
Adenosine (Ado)	1.42	8.27
Deoxycytidine (Cyd)	1.60	8.66
Thymidine (dT)	1.70	8.82

Subscript Guanosine is the exclusive DNA target for ${}^{1}O_{2}$ ($a^{1}\Delta_{g}$), photo-oxidation and ionizing radiation.

> OG is the oxidized guanine product is and it is used as a common biomarker.

Yanagawa, H.; Ogawa, Y.; Ueno, M., J. Biol. Chem. **1992**, 267, 13320-6. Steenken, S.; Jovanovic, S. V., J. Am. Chem. Soc. **1997**, 119, 617-618. Zhou, J.; Kostko, O.; Nicolas, C.; Tang, X.; Belau, L.; de Vries, M. S.; Ahmed, M., J. Phys. Chem. A **2009**, 113, 4829-4832. Schwell, M.; Hochlaf, M., *Top. Curr. Chem.* **2015**, 355, 155-208.

¹O₂ as Reactive Oxygen Species

Biosystems

- Enzymatic/nonenzymatic
- An oxidizer

- Progression of cell death
- Mutation, ageing and diseases
- Cancer treatment

Lick

Instrumentation

¹O₂ Generation

Reaction Product Cross Section and Energy Dependence

Computational Modeling

7

Iteration 1

Single reference Density Functional Theory ωB97XD/6–31+G(d,p)

Computational Modeling and Challenges

1. Spin contamination of ¹O₂ from ³O₂

2. Doublet-Quartet Mixing

$$-1$$
 $^{1}O_{2}(1) ----9MOG^{+}(1) doublet 2$

Yamaguchi's approximate spin projection

 E^{BS} = the computed total energy for a target broken-symmetry state $(\hat{S}^2)^{BS}$ = the expectation value of the total spin angular momentum E^{HS} & $(\hat{S}^2)^{HS}$ = the counterparts for the corresponding high-spin state

 N^{α} & N^{β} = the number of alpha and beta electrons BS & HS = the singlet and triplet for ${}^{1}O_{2}$ and doublet and quartet for O_2 adducts.

Oa

0.07

N7 0.07 -0.02 Br

Ob 0.01

Iteration 2

Single reference

Coupled-Cluster Single-, Double- and perturbative Triple excitations (CCSD(T))

- ➢Tolerate mild spin contamination
- ➤T1 diagnostic: measure of multireference effects

<0.02 closed shell, <0.03 radicals

Reaction Coordinate

Iteration 3

Multireference

- Complete active space self-consistent field (CASSCF)
- ➢Multiconfigurational method

>Insufficient dynamic treatment

Complete active space 2nd **perturbation theory** (CASPT2)

CASSCF multiconfigurational method

>Additional 2nd perturbation for dynamic treatment.

Summary

1. Complex mechanistic reaction pathway and biological significance

13

Summary

2. Understanding the chemistry of DNA damage and their rate limiting transient states.

3. Technological Advantages

Gas-phase Mass Spectrometer

No spontaneous deprotonation

> Longer ${}^{1}O_{2}$ lifetime

Acknowledgements

Prof. Jianbo Liu (Mentor)

Collaborators

- Dr. Midas Tsai (LaGuardia Community College, NYC)
- Dr. Toru Saito (Hiroshima City University, Japan)

Project Participants

- Dr. Yan Sun
- Jonathan Benny (Ph.D. Student)
- Wenjing Zhou (Ph.D. Student)

CU UNIVERSITY OF NEW YORK

DSRG grants