

GRADUAT CENTER

Singlet O₂ Oxidation Dynamics of 8-Bromoguanine Radical Cations

using Guided-Ion-Beam Tandem Mass Spectrometry

Jonathan Benny^{1*}, Toru Saito², May Myat Moe¹, and Jianbo Liu¹ ¹ Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States

² Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 731-3194 Hiroshima, Japan

Introduction

- Guanine, the preferred target in DNA for bromination by reactive halogen species (RHS), forms the mutagenic lesion 8-Bromoguanine (8BrG)
- Biological significance of oxidatively generated radical cations of 8-Bromoguanine (8BrG⁺⁺) and 8-Bromoguanosine (8BrGuo⁺⁺) by the lowest electronically excited singlet $O_2(a^1\Delta_g)$:
- Chronic inflammation and Cancer
- DNA strand breaks, DNA-protein crosslinks, mutation and apoptosis
- Biomarker for oxidative and halogenative stress within cells and tissues
- Singlet O_2 -based photodynamic therapy in cancer treatment
- Brominated nucleotides are considered potential radiosensitizers in radiotherapy

Instrumentation & Experiment

Guided-Ion-Beam Tandem Mass Spectrometer for Generation of 8BrG+

II. Generation and Detection of ¹O₂ Before Leaking into the Scattering Cell of the Mass Spectrometer

Results

I. Reaction Products and Cross Sections for ¹O₂ with 8BrG^{•+} and 8BrGuo^{•+}

- Reaction is exothermic and has no activation barriers above starting reactants
- The reactivity of 8BrG^{•+} is 5-fold higher than that of the unsubstituted guanine (G^{•+})
- The reaction efficiency of 8BrG^{•+} is 9.5% at $E_{col} = 0.05$ eV and decreases to 3% at 0.4 eV
- The reaction efficiency of G⁺⁺ is 2% at $E_{col} = 0.05$ eV and decreases to 1.4% at 0.1 eV

II. Reaction Potential Energy Surface of ¹**O**₂ **with 8BrG**^{•+} **at different levels of theory**

Theoretical Methods

The calculation of the reaction potential energy surface for $8BrG^{\bullet+}$ with ${}^{1}O_{2}$ is challenging due to multiconfigurational wavefunctions originating from the mixed open- and closed-shell character of ${}^{1}O_{2}$, and spin contamination in transition states and products

I. Approximately Spin Projected DFT

 E^{BS} : energy for broken-symmetry state $\langle \hat{S}^2 \rangle^{BS}$: spin angular momentum for broken-symmetry state E^{HS} : energy for high-spin state $\langle \hat{\mathbf{S}}^2 \rangle^{\text{HS}}$: spin angular momentum operator for high-spin state N^{α} : number of alpha electrons N^{β} : number of beta electrons

Among the different computational methods used in the PES calculations, the CASPT2(21,15) theory

provided the best description and agreement with experimental data

II. Coupled-Cluster Theory

DLPNO-CCSD(T) coupled with the aug-cc-pVTZ basis set was employed to assess the spin contamination in the reaction structures using the T1 diagnostic; it was also considered the gold standard of quantum chemistry due to its accuracy comparable to experiments (in the absence of spin contamination)

III. CASPT2

Energies of the DFT optimized reaction structures were recalculated using the multireference active space self-consistent field method CASPT2/6-31G**. It adds dynamic correlation to the complete active space self-consistent field (CASSCF) wavefunction using the second order perturbation theory

Conclusions

 \geq In the reaction of ¹O₂ with 8BrG^{•+}/8BrGuo^{•+}, the product cross section increases with decreasing E_{col} . It indicates that the reaction is exothermic

The most energetically favorable reaction pathways for $8BrG^{\bullet+} + {}^{1}O_{2}$ are the C5-O₂ and C8-O₂

Acknowledgements

NSF (CHE 1856362) CUNY Graduate Center Doctoral Student Research Grant 17

References

- 1. Fang Y.; Liu J., J Phys Chem A. 2009, 113, 11250-11261.
- Fang Y.; Liu F.; Bennett A.; Ara S.; Liu J., *J Phys Chem B*. **2011**, 115, 2671-2682
- 3. Benny J.; Saito T.; Moe, M. M.; Liu, J., J. Phys. Chem. A. 2022, 126, 68-79