Q

QUEENS
college

Singlet Oxygenation and Base-Pair Dissociation of
9-Methyl-8-Oxoguanine-1-Methyl-Cytosine Radical Cation [9MOG•1MC] ${ }^{\bullet+}$

May Myat Moe, ${ }^{\text {a }}$ Jonathan Benny, ${ }^{\text {a }}$ Midas Tsai, ${ }^{\text {b }}$ and Jianbo Liu*a

${ }^{\text {a }}$ Department of Chemistry and Biochemistry, CUNY Queens College and Graduate Center, 65-30 Kissena Blvd., Queens, NY 11367, USA
${ }^{\mathrm{b}}$ Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA

Introduction

Guanosine is susceptible to oxidative stress in biological systems, producing 8-oxo-7,8-dihydroguanosine (OG) as one of the major products. OG has an even lower oxidation potential than that of guanosine, leading to facile formation of radical cation $\mathrm{OG}^{\bullet+}$ in subsequent oxidatively generated DNA lesions.
OG adopts an anti-conformation when pairing with cytidine, following a Watson-Crick (WC)-type base-pairing motif. The presence of OG•C in base pair can lead to OG•A transversion if unrepaired during replication [Y. Nakabeppu, Int. J. Mol. Sci. 2014, 15, 12543].
$>$ Synergistic ionizing radiation and singlet $\mathrm{O}_{2}\left[\mathrm{a}^{1} \Delta_{\mathrm{g}}\right]$ oxidation of OG•C have implications on the radiotherapy and photodynamic therapy for cancer treatment; moreover, singlet oxygenation and ionization may affect intra-base pair proton transfer (PT) and dissociation of the OG•C base pair

Instrumentation and Experiment

Formation and reaction of $[\mathrm{OG} \cdot \mathrm{C}]^{++}$in the gas phase
using ESI guided-ion beam tandem mass spectrometer

$\left.\left[\mathrm{Cu}^{\mathrm{II}} \text { (nucleobase) }\right)_{3}\right]^{02+} \rightarrow\left[\mathrm{Cu}^{\mathrm{II}}(\text { nucleobase })_{2}\right]^{+}+$nucleobase ${ }^{0+}$ target gas Wee, S.; O'Hair, R. A. J.; McFadyen, W. D. Rapid Commun. Mass Spectrom. 2005, $19,1797{ }^{1} \mathrm{O}_{2}$ or Xe

Chemical generation of ${ }^{1} \mathrm{O}_{2}$ and detection using near IR emission

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2}+2 \mathrm{KOH} \rightarrow{ }^{1} \mathrm{O}_{2}\left(\mathrm{a}^{1} \Delta_{\mathrm{g}}\right) / \mathrm{O}_{2}\left(\mathrm{X}^{3} \sum_{\mathrm{g}}^{-}\right)+2 \mathrm{KCl}+2 \mathrm{H}_{2} \mathrm{O}$ Le Liu R Emre and J Liu J Phys Chem $B, 2014,118,3844385$

Experimental Results and Theoretical Modeling of a Base-Pair Model System [9MOG• 1 MC] ${ }^{++}$

1. Identification of conventional and PT conformers of [9MOG•1MC] ${ }^{\bullet+}$ and dissociation kinetics by tandem CID MS $\overbrace{\int_{120}^{[12 \mathrm{CO}+\mathrm{H}]^{+}}}^{\text {CID productions }}$

CID of the $9 \mathrm{MOG}^{\bullet+} \cdot 1 \mathrm{MC} \rightleftharpoons\left[9 \mathrm{MOG}-\mathrm{H}_{\mathrm{N} 1}\right]^{\bullet} \cdot\left[1 \mathrm{MC}+\mathrm{H}_{\mathrm{N3}}\right]^{+}$equilibrium ensemble with Xe : a) product ion mass spectrum, b) product ion cross sections, c) comparison of product ion ratio with RRKM predications, and d) dissociation PES for $9 \mathrm{MOG}^{\bullet}+1$ MC and its PT conformer, calculated at DLPNO-CCSD(T)/aug-cc-pVQZ// ω B97XD/6-311++G**, including 298 K thermal corrections.

2. Singlet oxygenation of $[9 \mathrm{MOG} \cdot 1 \mathrm{MC}]^{\bullet+}$: Ion-molecule reaction measurements and PES modeling

Product ion and cross section of ${ }^{1} \mathrm{O}_{2}+[9 \mathrm{MOG} \cdot 1 \mathrm{MC}]^{\cdot}$ Inset show a product ion mass spectrum at $E_{\text {col }}=0.02 \mathrm{eV}$.

Various ${ }^{1} \mathrm{O}_{2}$ oxidation pathways of $9 \mathrm{MOG}^{\bullet+} \cdot 1 \mathrm{MC}$ and $\left[9 \mathrm{MOG}-\mathrm{H}_{\mathrm{N} 1}\right]^{\bullet} \cdot\left[1 \mathrm{MC}+\mathrm{H}_{\mathrm{N} 3^{3}}\right]^{+}$calculated at approximately spin-projected ω B97XD/6-31+G**, including 298 K thermal corrections.

PES for $\mathrm{C} 5-\mathrm{O}_{2}$ addition and H -abstraction at N 7 , constructed using approximately spin-projected ω B97XD/6-31+G** and CASPT2/6-31G**

- eliminate spin-contamination and account for multireferential characters (mixing of doublet and quartet) for doublet radical $+{ }^{1} \mathrm{O}_{2}$

Energy differences of the two levels of theory are illustrated in green color.

Approximate spin projection (AP) method

$E=\frac{\left.\left\langle\hat{\mathbf{S}}^{2}\right\rangle^{\mathrm{HS}}-\left\langle\hat{\mathbf{S}}^{2}\right\rangle\right\rangle^{\mathrm{BS}}}{\left\langle\hat{\mathbf{S}}^{2}\right\rangle^{\mathrm{HS}}-\left\langle\hat{\mathbf{S}}^{2}\right\rangle^{\mathrm{BS}}} E^{\mathrm{BS}}-\frac{\left.\left\langle\hat{\mathbf{S}}^{2}\right\rangle^{\mathrm{BS}}-\hat{\mathbf{S}}^{2}\right\rangle_{\text {exat }}^{\mathrm{BS}}}{\left\langle\hat{\mathbf{S}}^{2}\right\rangle^{\mathrm{HS}}-\left\langle\hat{\mathbf{S}}^{\text {enat }}\right\rangle^{\mathrm{BS}}} E^{\mathrm{HS}}$
$\left\langle\hat{\mathbf{S}}^{2}\right\rangle_{\text {exact }}^{\mathrm{BS}}=\frac{N^{\alpha}-N^{\beta}}{2}\left(\frac{N^{\alpha}-N^{\beta}}{2}+1\right)$
$E^{\text {BS }} \quad$ energy for broken-symmetry state
$E^{\text {HS }} \quad$ energy for high-spin state
$\left\langle\widehat{\mathbf{S}}^{2}\right\rangle \quad$ average value of the total spin angular momentum operator
N^{α} and N^{β} numbers of alpha and beta electrons
T. Saito, et.al, J. Phys. Chem. A, 2010, 114, 7967-7974

CASPT2

Add dynamic correlation using second order perturbation theory with the CASSCF wavefunction as the reference
A composite CASPT2/DFT approach was able to produce correct PESs for many ${ }^{1} \mathrm{O}_{2}$ reactions

Comparison to ${ }^{1} \mathrm{O}_{2}$ with the $9 \mathrm{MOG}^{++}$monomer

The most probable product is [5-OO-9MOG] ${ }^{++}$as revealed by dynamics simulations of $9 \mathrm{MOG}^{\bullet+}$ with ${ }^{1} \mathrm{O}_{2}$ at $E_{\text {col }}=0.05 \mathrm{eV}$. (a) Variations in O_{2} at $E_{\text {col }}=0.05 \mathrm{eV}$. (a) Variations in
potential energy and in the center-ofpotential energy and in the center-ofmass distance between the collision partners, (b) changes of reactive bond lengths, and © interconversion between syn- and anti-[5-OO-9MOG] ${ }^{\bullet+}$.

Conclusions

The present work has assessed the chemistry of ${ }^{1} \mathrm{O}_{2}$ with a 9MOG nucleobase in a radical cation vs. a dehydrogenated neutral radical and either as an isolated monomer or paired with cytosine within a Watson-Crick base pair:
$9 \mathrm{MOG}^{\bullet+}, 9 \mathrm{MOG}^{\bullet+} .1 \mathrm{MC}$ and its PT conformer were formed in the gas phase by electrospray of $\mathrm{Cu}^{\mathrm{II}}$-nucleobase complex to the gas phase followed by redox-separation of the complex to nucleobase radical cation and Cu^{I}.

The two base-pair isomers (a conventional $9 \mathrm{MOG}^{\bullet+} .1 \mathrm{MC}$ and a PT structure $\left[9 \mathrm{MOG}-\mathrm{H}_{\mathrm{N} 1}\right]^{\bullet} \cdot\left[1 \mathrm{MC}+\mathrm{H}_{\mathrm{N} 3}\right]^{+}$) were distinguished by CID mass spectra, and their dissociation product ratios deviate from a statistical RRKM predictions by factor of 2 .
$9 \mathrm{MOG}^{\bullet+} \cdot 1 \mathrm{MC}$ and $\left[9 \mathrm{MOG}-\mathrm{H}_{\mathrm{N} 1}\right]^{\bullet} \cdot\left[1 \mathrm{MC}+\mathrm{H}_{\mathrm{N} 3^{\prime}}\right]^{+}$follow the same reaction pathways with ${ }^{1} \mathrm{O}_{2}$, except for the lack of $5 \mathrm{OOH}^{1}$ and H -abstraction in the PT conformer. Their most probable product channels correspond to an exothermic $\mathrm{C} 5-\mathrm{O}_{2}$ adduct followed by H -abstraction at N 7 , both of which have no activation barriers above reactants.

Singlet oxygenation slightly lowers the energies of the PT basepair structure in the oxidation products.

The 9MOG radical within a WC base pair maintains the same reactivity with ${ }^{1} \mathrm{O}_{2}$ as the isolated single $9 \mathrm{MOG}^{\bullet+}$
Approximately spin projection and CASPT2 have effectively removed spin-contamination in the multireferential PES of doublet radical with ${ }^{1} \mathrm{O}_{2}$. The CASPT2-calcauled reaction energies are generally $0.05-0.3 \mathrm{eV}$ lower than the spin-projected DFT energies, except for $500 H^{1}$ for which the CASPT2 energy is $0.05-0.27 \mathrm{eV}$ higher.

Acknowledgements

The work was supported by NSF (CHE 1856362) and CUNY PSC-CUNY Awards. 9MOG was gifted from Prof. Bernhard Lippert (University of Dortmund, Germany)

