

Singlet Oxygenation and Base-Pair Dissociation of 9-Methyl-8-Oxoguanine–1-Methyl-Cytosine Radical Cation [9MOG·1MC]+

May Myat Moe,^a Jonathan Benny,^a Midas Tsai,^b and Jianbo Liu*^a

^a Department of Chemistry and Biochemistry, CUNY Queens College and Graduate Center, 65-30 Kissena Blvd., Queens, NY 11367, USA ^b Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA

Introduction

➢ Guanosine is susceptible to oxidative stress in biological systems, producing 8-oxo-7,8-dihydroguanosine (OG) as one of the major products. OG has an even lower oxidation potential than that of guanosine, leading to facile formation of radical cation OG^{•+} in subsequent oxidatively generated DNA lesions.

- ➤ OG adopts an *anti*-conformation when pairing with cytidine, following a Watson-Crick (WC)-type base-pairing motif. The presence of $OG \cdot C$ in base pair can lead to $OG \cdot A$ transversion if unrepaired during replication [Y. Nakabeppu, Int. J. Mol. Sci. 2014, 15, 12543].
- Synergistic ionizing radiation and singlet $O_2[a^1\Delta_g]$ oxidation of OG·C have implications on the radiotherapy and photodynamic therapy for cancer treatment; moreover, singlet oxygenation and ionization may affect intra-base pair proton transfer (PT) and dissociation of the $OG \cdot C$ base pair

Instrumentation and Experiment

Formation and reaction of [OG·C]^{•+} in the gas phase using ESI guided-ion beam tandem mass spectrometer

1.80

CH₃

 $[Cu^{II}(nucleobase)_3]^{\bullet 2+} \rightarrow [Cu^{II}(nucleobase)_2]^+ + nucleobase^{\bullet +}$ target gas $^{1}O_{2}$ or Xe Wee, S.; O'Hair, R. A. J.; McFadyen, W. D. Rapid Commun. Mass Spectrom. 2005, 19, 1797 Cheng, P.; Bohme, D. K. J. Phys. Chem. B 2007, 111, 11075 Y. Fang and J. Liu, J. Phys. Chem. A, 2009, 113, 11250-11261

Chemical generation of ¹O₂ and detection using near IR emission

$H_2O_2 + Cl_2 + 2KOH \rightarrow {}^1O_2 (a^1\Delta_g)/{}^3O_2 (X^3\Sigma_g^-) + 2KCl + 2H_2O$ W. Lu, F. Liu, R. Emre and J. Liu, J. Phys. Chem. B, 2014, 118, 3844-3852.

Experimental Results and Theoretical Modeling of a Base-Pair Model System [9MOG·1MC]*

Comparison to ¹O₂ with the 9MOG^{•+} monomer

Chemistr Europe

ChemPlusChem

CID of the 9MOG^{•+}·1MC \rightleftharpoons [9MOG – H_{N1}][•]·[1MC + H_{N3'}]⁺ equilibrium ensemble with Xe: a) product ion mass spectrum, b) product ion cross sections, c) comparison of product ion ratio with RRKM predications, and d) dissociation PES for 9MOG^{•+}·1MC and its PT conformer, calculated at DLPNO-CCSD(T)/aug-cc-pVQZ// ω B97XD/6-311++G**, including 298 K thermal corrections.

2. Singlet oxygenation of [9MOG·1MC]⁺: Ion-molecule reaction measurements and PES modeling

Product ion and cross section of ${}^{1}O_{2} + [9MOG \cdot 1MC]^{\bullet+}$ Inset show a product ion mass spectrum at $E_{col} = 0.02 \text{ eV}$.

Various ${}^{1}O_{2}$ oxidation pathways of 9MOG⁺⁺·1MC and [9MOG – H_{N1}][•]·[1MC + H_{N3'}]⁺ calculated at approximately spin-projected ω B97XD/6-31+G**, including 298 K thermal corrections.

PES for C5-O₂ addition and H-abstraction at N7, constructed using approximately spin-projected @B97XD/6-31+G** and CASPT2/6-31G**

[5-OO-9MOG]^{•+} as revealed by dynamics simulations of 9MOG^{•+} with ${}^{1}\text{O}_{2}$ at $E_{\text{col}} = 0.05$ eV. (a) Variations in potential energy and in the center-ofmass distance between the collision partners, (b) changes of reactive bond lengths, and © interconversion between syn- and anti-[5-OO-9MOG]^{•+}.

Conclusions

The present work has assessed the chemistry of ${}^{1}O_{2}$ with a 9MOG nucleobase in a radical cation vs. a dehydrogenated neutral radical and either as an isolated monomer or paired with cytosine within a Watson–Crick base pair:

- 9MOG^{•+}, 9MOG^{•+}·1MC and its PT conformer were formed in the gas phase by electrospray of Cu^{II}-nucleobase complex to the gas phase followed by redox-separation of the complex to nucleobase radical cation and Cu^I.
- The two base-pair isomers (a conventional 9MOG^{•+}·1MC and a PT structure $[9MOG - H_{N1}] \cdot [1MC + H_{N3'}]^+$) were distinguished by CID mass spectra, and their dissociation product ratios deviate from a statistical RRKM predictions by factor of 2.
- 9MOG^{•+}·1MC and $[9MOG H_{N1}]^{\bullet} \cdot [1MC + H_{N3'}]^{+}$ follow the same reaction pathways with ${}^{1}O_{2}$, except for the lack of 5OOH¹ and H-abstraction in the PT conformer. Their most probable product channels correspond to an exothermic $C5-O_2$ adduct, followed by H-abstraction at N7, both of which have no activation barriers above reactants.

— eliminate spin-contamination and account for multireferential characters (mixing of doublet and quartet) for doublet radical + ${}^{1}O_{2}$

Energy differences of the two levels of theory are illustrated in green color.

Approximate spin projection (AP) method

$$E = \frac{\langle \hat{\mathbf{S}}^2 \rangle^{\text{HS}} - \langle \hat{\mathbf{S}}^2 \rangle^{\text{BS}}}{\langle \hat{\mathbf{S}}^2 \rangle^{\text{HS}} - \langle \hat{\mathbf{S}}^2 \rangle^{\text{BS}}} E^{\text{BS}} - \frac{\langle \hat{\mathbf{S}}^2 \rangle^{\text{BS}} - \langle \hat{\mathbf{S}}^2 \rangle^{\text{BS}}}{\langle \hat{\mathbf{S}}^2 \rangle^{\text{HS}} - \langle \hat{\mathbf{S}}^2 \rangle^{\text{BS}}} E^{\text{HS}}$$

$$\delta^2 \rangle_{\text{exact}}^{\text{BS}} = \frac{N^{\alpha} - N^{\beta}}{2} \left(\frac{N^{\alpha} - N^{\beta}}{2} + 1 \right)$$

- E^{BS} energy for broken-symmetry state
- $E^{
 m HS}$ energy for high-spin state
- $\langle \hat{\mathbf{S}}^2 \rangle$ average value of the total spin angular momentum

operator

 N^{α} and N^{β} numbers of alpha and beta electrons

T. Saito, et.al, J. Phys. Chem. A, 2010, 114, 7967-7974 J. Benny, T. Saito, M M. Moe and J. Liu, J. Phys. Chem. A, 2022, 126, 68-79

CASPT2

Add dynamic correlation using second order perturbation theory with the CASSCF wavefunction as the reference

A composite CASPT2/DFT approach was able to produce correct PESs for many ${}^{1}O_{2}$ reactions

- Singlet oxygenation slightly lowers the energies of the PT basepair structure in the oxidation products.
- The 9MOG radical within a WC base pair maintains the same reactivity with ${}^{1}O_{2}$ as the isolated single 9MOG^{•+}
- Approximately spin projection and CASPT2 have effectively removed spin-contamination in the multireferential PES of doublet radical with ${}^{1}O_{2}$. The CASPT2-calcauled reaction energies are generally 0.05 - 0.3 eV lower than the spin-projected DFT energies, except for 500H¹ for which the CASPT2 energy is 0.05 - 0.27 eV higher.

Acknowledgements

The work was supported by NSF (CHE 1856362) and CUNY PSC-CUNY Awards. 9MOG was gifted from Prof. Bernhard Lippert (University of Dortmund, Germany).

