Homework 2

1. Show that $(\cos a x)(\cos b y)(\cos c z)$ is an eigenfunction of the operator

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

which is called the Laplacian operator.
2. We just learned that if φ_{n} is an eigenfunction for the time-independent Schrödinger equation, then

$$
\Psi_{n}(x, t)=\varphi_{n(x)} e^{-i E_{n} t / \hbar}
$$

Show that if $\varphi_{n(x)}$ and $\varphi_{m(x)}$ are both stationary states of \widehat{H}, then the state

$$
\Psi(x, t)=c_{n} \varphi_{n(x)} e^{-i E_{n} t / \hbar}+c_{m} \varphi_{m(x)} e^{-i E_{m} t / \hbar}
$$

satisfies the time-dependent Schrödinger equation.
3. Show that the probability associated with the sate ψ_{n} for a particle in a one-dimensional box of length a obeys the following relationships:

$$
\begin{aligned}
& \operatorname{Prob}\left(0 \leq x \leq \frac{a}{4}\right)=\operatorname{Prob}\left(\frac{3 a}{4} \leq x \leq a\right)=\left\{\begin{array}{c}
\frac{1}{4}, n \text { even } \\
\frac{1}{4}-\frac{(-1)^{\frac{n-1}{2}}}{2 \pi n}, n \text { odd }
\end{array}\right. \\
& \operatorname{Prob}\left(\frac{a}{4} \leq x \leq \frac{a}{2}\right)=\operatorname{Prob}\left(\frac{a}{2} \leq x \leq \frac{3 a}{4}\right)=\left\{\begin{array}{c}
\frac{1}{4}, n \text { even } \\
\frac{1}{4}+\frac{(-1)^{\frac{n-1}{2}}}{2 \pi n}, n \text { odd }
\end{array}\right.
\end{aligned}
$$

4. What are the units, if any, for the wave function of a particle in a one-dimensional box?
5. We just discussed in class the values of $\langle x\rangle,\left\langle x^{2}\right\rangle$ and σ_{x} for a quantum-mechanical particle in a box. For comparison, a classical particle in a box has an equal-likehood of being found anywhere within the region of $0 \leq x \leq a$. Consequently, its probability distribution is

$$
p(x) d x=\frac{1}{a} d x, 0 \leq x \leq a
$$

a) Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle$ and σ_{x} for the classical particle.
b) Show that in the limit as $n \rightarrow \infty$, the quantum mechanical results are taken on the classical values.
6. Show that the particle-in-box wave functions satisfies the orthonormal relation

$$
\int_{0}^{a} \psi_{\mathrm{m}}^{*}(\mathrm{x}) \psi_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=\delta_{\mathrm{mn}}
$$

Hint: Using the trigonometric identity $\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta)$
7. The Schrödinger equation for a particle of mass m constrained to move on a ring of radius a is

$$
-\frac{\hbar}{2 I} \frac{d^{2} \psi}{d \theta^{2}}=E \psi(\theta), 0 \leq \theta \leq 2 \pi
$$

where $I=m a^{2}$ is the moment of inertia and θ is the angle that describes the position of the particle around the ring.
a) Show that the eigenfunctions to this equation are

$$
\psi(\theta)=A e^{i n \theta}, \text { where } n= \pm(2 I E)^{1 / 2} / \hbar
$$

b) Argue that the appropriate condition is $\psi(\theta)=\psi(\theta+2 \pi)$ and use this condition to show that $E_{n}=\frac{n^{2} \hbar^{2}}{2 I}, n=0, \pm 1, \pm 2, \ldots$
c) Calculate the normalization constant A .
8. In class we applied the equation for a particle in a box to the π electrons in butadiene. This model is called the free-electron model. Using the same argument, show that the length of hexatriene can be estimated to be 867 pm . Show that the first electronic transition is predicted to occur at $2.8 \times 10^{4} \mathrm{~cm}^{-1}$.
9. What are the degeneracies of the first four energy levels for a particle in a three-dimensional box with $\mathrm{a}=\mathrm{b}=1.5 \mathrm{c}$?

