Homework 4 Due Tuesday Oct 18, in class

Vectors

1. a) Determine $w=u \times v$ given that $u=-i+2 j+k$ and $v=3 i-j+2 k$.
b) What is $v \times u$ equal to?
c) Find the angle between the two vectors $u=-i+2 j+k$ and $v=3 i-j+2 k$.
2. Show that the set of vectors is orthonormal
$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0\right),\left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$, and $\left(\frac{1}{\sqrt{3}}, 0,-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$
3. Show that
$\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$ and
$\frac{d}{d t}(u \times v)=\frac{d u}{d t} \times v+u \times \frac{d v}{d t}$
(Hint, let $u=u_{x}(t) i+u_{y}(t) j+u_{z}(t) k$, and $\left.v=v_{x}(t) i+v_{y}(t) j+v_{z}(t) k\right)$
4. a) Textbook (Levine's $6^{\text {th }}$ ed. Quantum Chemistry) Prob. 5.18 (a)
b) Textbook Prob. 5.19 (a)

Angular Momentum

5. Textbook Prob. 5.29
6. Textbook Prob. 5.34
7. Prove that \hat{L}^{2} commutes with \hat{L}_{x}, \hat{L}_{y} and \hat{L}_{z}.
8. In the far infrared spectrum of $\mathrm{H}^{79} \mathrm{Br}$, there is a series of lines separated by $16.72 \mathrm{~cm}^{-1}$. Calculate the values of the moment of inertia and the internuclear separation in $\mathrm{H}^{79} \mathrm{Br}$.
9. The following lines were observed in the microwave absorption spectrum of $\mathrm{H}^{127} \mathrm{I}$ and D^{127} I between $60 \mathrm{~cm}^{-1}$ and $90 \mathrm{~cm}^{-1}$. Use the rigid-rotator approximation to determine the values of \tilde{B}, I and J for each molecule. Take the masses of H, D and ${ }^{127}$ I to be $1.008,2.013$ and 126.904 amu , respectively.

	$\bar{v}_{\text {obs }} / \mathrm{cm}^{-1}$			
$\mathrm{H}^{127} \mathrm{I}$	64.275	77.130	89.985	
$\mathrm{D}^{127} \mathrm{I}$	65.070	71.577	78.094	84.591

