Fall 2011 CHEM 760: Introductory Quantum Chemistry

Homework 4 Due Tuesday Oct 18, in class

Vectors

- 1. a) Determine $w = u \times v$ given that u = -i + 2j + k and v = 3i j + 2k.
 - b) What is $v \times u$ equal to?

c) Find the angle between the two vectors u = -i + 2j + k and v = 3i - j + 2k.

2. Show that the set of vectors is orthonormal

$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0\right), \left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), and \left(\frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

3. Show that

$$\frac{d}{dt}(u \cdot v) = \frac{du}{dt} \cdot v + u \cdot \frac{dv}{dt} \text{ and}$$
$$\frac{d}{dt}(u \times v) = \frac{du}{dt} \times v + u \times \frac{dv}{dt}$$

(Hint, let $u = u_x(t)i + u_y(t)j + u_z(t)k$, and $v = v_x(t)i + v_y(t)j + v_z(t)k$)

4. a) Textbook (Levine's 6th ed. Quantum Chemistry) Prob. 5.18 (a)

b) Textbook Prob. 5.19 (a)

Angular Momentum

- 5. Textbook Prob. 5.29
- 6. Textbook Prob. 5.34
- 7. Prove that \hat{L}^2 commutes with \hat{L}_x , \hat{L}_y and \hat{L}_z .
- 8. In the far infrared spectrum of H⁷⁹Br, there is a series of lines separated by 16.72 cm⁻¹. Calculate the values of the moment of inertia and the internuclear separation in H⁷⁹Br.
- 9. The following lines were observed in the microwave absorption spectrum of $H^{127}I$ and $D^{127}I$ between 60 cm⁻¹ and 90 cm⁻¹. Use the rigid-rotator approximation to determine the values of \tilde{B} , I and J for each molecule. Take the masses of H, D and ¹²⁷I to be 1.008, 2.013 and 126.904 amu, respectively.

	$\bar{\nu}_{obs}$ / cm ⁻¹			
$H^{127}I$	64.275	77.130	89.985	
$D^{127}I$	65.070	71.577	78.094	84.591