Homework 6 Due: Nov 3 in class

1. Determine the values of x for which the following equation will have a nontrivial solution
$x c_{1}+c_{2}+c_{4}=0$
$c_{1}+x c_{2}+c_{3}=0$
$c_{2}+x c_{3}+c_{4}=0$
$c_{1}+c_{3}+x c_{4}=0$
2. Show that
$\left|\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|=1$
3. Solve the following set of equations using Cramer's rule (textbook p220)
$x+2 y+3 z=-5$
$-x-3 y+z=-14$
$2 x+y+z=1$
4. Given the matrices
$A=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad B=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0\end{array}\right) \quad C=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
Show that $A B-B A=i C$ and $A^{2}+B^{2}+C^{2}=2 I$, where I is a unit matrix.
5. Determine the eigenvalues and eigenvectors of $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$
6. Use the variational method to calculate the ground-state energy of a particle constrained to move within the region $0 \leq \mathrm{x} \leq \mathrm{a}$ in a potential given by

$$
V(x)= \begin{cases}V_{0} x & 0 \leq x \leq \frac{a}{2} \\ V_{0}(a-x) & \frac{a}{2} \leq x \leq a\end{cases}
$$

As a trial function, use a linear combination of the first two particle-in-a-box wave functions:

$$
\phi(x)=c_{1}\left(\frac{2}{a}\right)^{1 / 2} \sin \frac{\pi x}{a}+c_{2}\left(\frac{2}{a}\right)^{1 / 2} \sin \frac{2 \pi x}{a}
$$

7. Calculate the ground state of a hydrogen atom using a trial function of the form $e^{-\alpha r}$. Why does the result turn out to be so good?
8. Suppose we were to use a trial function of the form $\phi=c_{1} e^{-\alpha r}+c_{2} e^{-\beta r^{2}}$ to carry out a variational calculation for the ground-state energy of a hydrogen atom. Can you guess without doing any calculation what $\mathrm{c}_{1}, \mathrm{c}_{2}, \alpha$, and $E_{\min }$ will be? What about a trial function of the form $\phi=\sum_{k=1}^{5} c_{k} e^{-\alpha_{k} r-\beta_{k} r^{2}}$?
