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D.I LOGARITHMS AND EXPONENTIALS

The natural logarithm of a numberx is the power to which e : 2.718281 ... must
be rgised to yield x. This definition and the properties of natural logarithms are
summarized by

" l n x  

-

l n ( x Y ) :  l n x  * l n /

l n ( x l Y ) = l n - r - l n Y

lnxY - y ln;r

The base 10 logarithm of a number.r is the power to which 10 must be raised
to yield x.

10to8 t  :  x

lnx = ln(10)logx :2.3031o9x
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Exponential functions have the following properties:

a^*n  :  a^  an

amlan :  am-n

(a^)n  :  a^"

D.2 SERIES

It is often of interest to see the form of an equation when one of the quantities
becomes indefinitely small or indefinitely large. Since most functions we deal with
can be expressed by infinite series, the series expression can be used with higher-
order terms omitted. The series expression for a function f can be calculated with
the Maclaurin series:

r@) : /(o)*fg) '  + : fq) x2 +'
"  

t " '  
\dx  ) , -0 "  2 !  \d r :  /  o - "

The following infinite series are examples of Maclaurin series:

sinx:  -  ] i " * f  *  [a l lx ]
- 2  . 4

c o s x : I - ; + ^ -  [ a l l r ]

- 2  - 3
: ' : 1+x+ j * ; n "  [ a l l x ]

rn(1 + x):x-+.+-+. ["<t]
( 1  + x ) - t :  t  - x + x 2  - t 3 + " '  l t t c t ]

( 1 - r ) - t  : 1 + x  + x 2 + x 3  +  " '  l r '  < t )

( 1  -  r ) - 2  :  r  + 2 x  + 3 x 2  +  4 x 3  +  " '  [ t t .  t ]

(1 +x) ' ' ' * r *1-  * .1-  [ "<t ]'  
2  8  l b

The series (1 + -r )' is referred to as the binomial series. If n is an integer, the
series terminates after (n + 1) terms, but when n is not an integer, the series is

infinite:

( 1 + x ) n  :  l  *  n . r  * n ( n - - . 1 \ * z . W . r 3 + " .  [ r ' .  t ]

A Maclaurin series is an expansion about the point x : 0. A Taylor series is
an expansion about x = .ro. The Taylor series is

f ( x \ = f ( x =  
'  / d f \  t / d 2 f \  ' 1'o) * l,* l, 

(x - xo) . t \*r/.^ 
(-r - x6,1' + "'
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D.3 CATCULUS

Some basic derivatives are

. - ,  d u
d-r

,, du- €*-;-
clx

_ 1

: cosx

x lnax - x_

^ , l r '  2x  2 \
""^ [ ;  

-  
r ,  + n I

\ "  "  "  /

l d x
l - =
J x

ln*at  =
)

t ^

l  
x 'eor  dx  =

dun

dt

d e u

d"

d ln.r
dt

d sinx
dt

d cosx
dx

dzbt (x)l
dr

dtuwl dvt , dl
f,=frrfr

I  /  t t r t l

#{:)= u#, + r#i d(u lu )  _
d.r

Some basic indefinite intesrals are

(#)(#) (#) :

I  r " a r :  
I  

t o * t
J  d - f  I

| ""a* 
: r 

"o'J a

-  s lnx

dz  dy
dy |fr 

(chain rule)

-1 (cyclic rule)

u (duldx) -  u(du ldx)---;r--

(a  +  -1 )

lnlxl

i

Some basic definite integrals are

[ ' -u:!

xn  e -qx  d t  :  +  (n>  - r , q  >o )
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f

r (n\' ' ': r \b)l;

l 2 n
Or: l

J O

- h . 2  ,
e " ' d x

, 2n " -bxz  d ,  - 1  ' 3 . . , ( 2 n
( n  :  1 , 2 , 3 , . . . )

* \ l  t r :0 , r .2 , . . . )

:  1 , 2 ,3 , . . . )

( m * n )

2 n + t

h*(

r \  /  \ I l l- t ) l  7 r  \-  
\ h r r + 1  |\ " /

a2tz
+  a t  +  

2 l  
+ . . .l,-

r
c  I  u a  -

sin rnx sin zl.x

sinz nx * : 
lo"'' 

cos2 nx dx : - l n
A '

r" cosmx cosnx d-r : 0

Also see Table 17 .l for definite intesrals.

D.4 SPHERICALCOORDINATES

The choice of a coordinate system is a matter of convenience. When a system has
some kind of a natural center, as in the case of an atom, spherical coordinates
are convenient, as indicated by Fig. D.4.1. The angle g is the declination from the
north pole, so 0 < 0 < r. Since there is not a natural zero value for f, the angle
around the equator is measured from the x axis, as indicated in the figure, and
0  <  d  = 2 r . S i n c e r i s t h e d i s t a n c e f r o m t h e o r i g i n , 0  <  r  <  - .

The Cartesian coordinates r, y, and z are related to the spherical coordinates
r , 0 , a n d  $ b y

x : r s i n 0 c o s f

y  :  r  s i n d s i n f

z : r c o s 9

Figure D.4.1 

*Spf,"ri.^t 

coordinate system where a point is specified by r , 0, and g

(D.4 .1)

(D.4.2)

(D.4.3)
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It is readily shown that the spherical coordinates are related to the Cartesian co-
ordinates by

r : ( x 2 + y 2 + 2 2 ) r t 2 (D.4.4)

(D.4.s)

(D.4.6)

coordi-

(D.4.7)

(D.4.8)

cos 0
( * ' + y ' + 2 2 ) t t z

M = 1 2 s i n 0 d 0 d @

h n 6 : t -

Figure D.4.2 shows that the diffJential volume element in spherical
nates is

dV :  (r  s in d df)  (r  d0) dr = r2 sin 0 dr d0 d6

It also shows that in sphelcal coordinates the differential area is given by

The volume of a sphere of radius c is given by

,  :  
f  

rz dr losinddo (" or :  
$)o,od 

: + (D4e)

The surface area of a sphere of radius a is given by

f  r  f  Z n

A : a2 |  s in o d0 |  dd = azQ)(2n) :  4*z
J O  J O

(D.4.10)

we can integrate a function f (r,0, Q) over the full range of these coordinates by
use of

(D.4 .11)

An example of this type of integral is the orthogonality relation of atomic wave-
functions.

x

Figure D.4.2 Volume element in a spherical coordinate system.

,  :  
f  

12 dr  
los in  

odd ( "  or f? ,0 ,Q)

r s t n  e  dQ



D.5 LEGENDRETRANSFORMS

The variables in a function can be changed by simply substituting an expression for
a variable in terms of a new variable. For example, the thermodynamic tempera-
ture 7 in an equation can be replaced using Z : t I273.15 to obtain the equation
written in terms of the Celsius temperature t. Another way to change variables
involves defining a new property that depends on a derivative of the original func-
tion, rather than a new variable such as r in this example. This method, which is
especially useful in thermodynamics, is referred to as a Legendre transform.

Consider a function / (.x ) that is differentiable for all x ; this function is plotted
in Fig. D.5.1. The total differential of / is given by
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trl:9)

Figure D.5.1 Plot of /(-r) versus -x.

(D.s.1)

where the functionp(x) is the slope f'(x) of f (x) at every value of x. The ob-
jective of the Legendre transform is to find a function g(p) of the new variable
p :  f  

' (x) that is equivalent to/(x).  By equivalent we mean that/(x) and Sb)
contain the same information; in short, g@) can be calculated from f (x), and

/(x ) can be calculated from g (p ). The new function g (p ) can be obtained by use
of Fig. D.5.1. The value of p at any point along/(x ) is the slope/'(x ). It is evident
from the figure that the equation for the tangent I(x) at any point x6 along the
curve is

d f
d f : + d , r : p ( x l d t" d-r

r @) : f(xo) + f'(xo)(x * xs)

The intersection of the tangent with the vertical axis is given by

g(ro) : .f (xo) - xo,f '(xo)

The value of function g depends on xs and, for a general x6,

c : f - x f ' ( x ) : f - xp

(D.s.2)

(D.s.3)

(D.s.4)

The new function g is referred to as the Legendre transform of/, and this equation
shows that g is obtained from / by subtracting xp , which is xf ' (x). This process
can be generalized to functions of two or more variables.

In Chapter 4 we found that the internal energy U is a function of S and V.
However, S and V may not be experimentally convenient variables. The following
Legendre transform was used to define the Gibbs energy G:

G : U + P V - T S (D.s.s)

As shown in Chapter 4, the Gibbs energy is a function of Z and P, which are
convenient independent variables for work in the laboratory.

D.6 DETERMINANTS

A determinant is a square array of numbers. Its value is defined as a certain sum
of products of subsets of the elements. If the determinant has n rows and columns.
each term in the sum will have n factors in it. For a determinant of order 2.

l a t  b t  I
L ' J  =  A t D 2 -  A Z D :
l b  O ' t l

:u-,(#),-'(#)"
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The value of a large determinant may be obtained by expanding by minors. For 3determinant of order 3.

Determinants of higher order are defined by an analogous row (or column)
expansion.

Simultaneous linear equations can be solved using determinants. For exam-
ple, consider the set

a y X + A n l + Q 1 3 2 = C y

a 2 1 X * a Z Z l * A Z 3 Z : C 2

a 3 1 x * a n l * a 3 3 2 : c 1

The determinant of the coefficients of x, y , and z is

l a r  b L  c r  l  r ,

I1: t: :::l: ",lt: ::l_ "1:: ::1.,,1:: i:l
= a1b2c3 + azb3ct -l a3bp2 - a3b2c1 - a2b(a - a1b3c2

lqtt an anl
D : latr a.>.t axl

l";; ";; ",,1
It can be shown that

t  lc t^ t -- D l'^,
t c l

I
1  l a t r' I ^

D 1"21
l a u

', lo'r l

D lort
Vzr

an ottl
O)t  Qtz l

an ottl

c1 ortl
Ct  a r , l

c3 avl

atz . ' I
Q ,  C t l,;; ';l

Note that the numerators of these equations are obtained by replacing the column
in the denominator that is associated with the unknown quantity with the coetfi-
cients on the right-hand side of the simultaneous equations. Th-is way of writing
the solution of a set of simultaneous linear equations-is referred to as Cramer's
rule.

If c1 : c2 : ca = 0, the equations are said to be homogeneous. If the
equations are homogeneous, there is a trivial solution x : y : z :0. There
is a nontrivial solution only if the determinant in the denominator is equal to
zero. Section 11.3, on the hydrogen molecule ion, shows that the LCAO method
yields two homogeneous equations, and so multiplying out the determinant of
coefficients yields a quadratic equation in the energy. The two sglutions of the
quadratic equation yield the energies of the bonding molecula, -uit^t and the
antibonding molecular orbital. Section 11.7 shows that there are four homoge-
neous equations for 1,3-butadiene, so multiplying out the determinant yields the
energies of two bonding and two antibonding Hrickel molecular orbitals.
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D.7 VECTORS

A vector quantity has direction as well as magnitude. A vector A in a Cartesian
coordinate system can be represented by

A : A * i + A r j + A z k (D.7.1)

where i,j, and ft are vectors of unit length that point along the x, y, and z axes
of the coordinate system. The coordinate systems in this book are right-handed;
this means that if you move the fingers of your right hand from i toj, your thumb
points along /<. The quantities A.,, Ar, and A. are referred to as components of
A; they can be positive or negative. It follows from the Pythagorean theorem that
the length of A is given by

A: lA l :@? ,+A j+A2 ,11 /2 (D.7.2)

When vectors are added, their components in the three directions add sep-
arately. For example, if A = i + j - k and B : i +2j+3/c, the sum of the two
vectors is A + B :2i +3j +2k. The addition of vectors is il lustrated in Fig. 10.16.

There are two ways to form the product of two vectors: scalar product and
vector product. The scalar product yields a number (a scalar), and the vector
product yields a vector. The scalar product of A and B is defined by

A'B :  lA l la l  cosa (D.7.3)

where I is the angle between A and B. This is often referred to as the dot
product. The scalar product is commutative because A'B : B '4. Equation
D.7.3 can be used to show that i  .  i  :  j  . j  :  k.k : l1 l l1 l  cos 0o :  1 and
i . j  :  j  . i  :  i . k  :  k . i  : j  . k  =  k . j  :  l 1 l l 1 l  c o s 9 0 '  :  0 . W h e n A  a n d
B are expressed in terms of components and these equations are used, it can be
shown that

A ' B : A , 8 , + A , - B r + A r B ,

There are examples of scalar products in Sections 2.1 and 15.2.
The vector product ofA and B is defined by

A  x B  =  l A l l B l c s i n 0

(D.1.4)

(D.7.s)
where 0 is the angle between A and B and c is a unit vector perpendicular to
the plane formed by A and B. The direction of c is given by the right-hand rule:
If the fingers of your right hSnd move from A to B, then c is in the direction of
your thumb. This is often referred to as the cross product. The cross product is not
commutative because AxB = -B x A. Equation D.7.5 can be used to show that
i  x  i  :  j  x j  =  k x k  :  l l l l l l c s i n 0 o : 0 ,  i  x j  : - j  x i  : l 1 l l 1 l f t s i n 9 0 "  =
k , j  x k : - k x j  :  i , a n d k x i  : - i  x k :  / c . W h e n A a n d g a r e e x p r e s s e d
in terms of components and these equations are used, it can be shown that

Ax  B :  (AyB,  -  AzBt ) i  +  (AzB,  -  A ,B. ) j  +  (A-By  -  
4 ,8 , )k  (D.7 .6)

This equation can be conveniently expressed as a determinant:

A X B : (D.7.7)
l ;  j  k
lA,  Ay Az

ln- By Bz

There are examples of cross products in Section 9.12.
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The following operator can be used in different ways:

o= ,(*). .r(;}),. .*(*)., (D.7.8)

1. If a function / is a function of x , y, and z, then v/ (gradient of / or ,,grad 
/,,)is a vector:

vf : r t+ i t+*{'  0 x  " 0 y  A z

2. The scalar product of V with a vector u yields the divergence
vector:

v,'=(#).(#).(#)
3. The vector product of v with a vector u yields the curl of the vector:

vxu : curru : t(+ -+). j(+- +). k(+- 9) (D7u)
\ a y  d z  I  "  \ d z  a x  I  \ d r  a y  )  

\ - " " ' /

The operator v2 (the Laplacian) is given in cartesian coordinates as

v':L*!*L
dx '  dy"  oz '

In spherical coordinates, the Laplacian operator is

n )  r  d  I r d \  1  a 2  1  dV - : , ^ l r . ^ l * . - _ +
rz  0 r  \  a ,  I  12  s inz7  a62 12  s in  g  dg

(D.7.e)

("div") of that

(D.7.10)

(D.1.12)

(D.7.13)

D.B MATRICES*

A matrix is an array of numbers. If a matrix
represented by

I  o l  Q t t

I o, o;;o:1,
Lo^, am2

The sum of two matrices is defined by

C :A+B

where cij : aij * b;1 for every i and7.
The product of a scalar c and a matrix is defined by

B : c A  6 '

where b;1 : ca4 for every i and 7.
*G. strang, Linear Algebra and lts Applicarions, New york: Academic, 19g0; R. G.Mortimer, Mathe.
matics for Physical Chemistry, New york: Macmillan, 19g1.

/ .  d \
l s l n  f / -  |
\  a0 )

has rn rows and n columns it may be

a h f

I
I

a^" ) 
,"
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The product of two matrices is similar to the scalar product of two vectors. If
C is the product AB, then

, , i  : 2o ,obo i
k = l

where n is the number of columns in A . If B is to be multiplied by A, it must have
as many rows as A has columns. For example,

lot ,  
orr l lu, ,  

b,r j  lorrbr,  
*  apb21 alybp * orrbrrf

AB =  
la21 or r l l ; ' " ' ,  ; : : l  

:  
Io7b , ,  *  a22b21 a21bp *  azzbzz  I

Lar  a32J '  "zz r  
Loybt ,  *  a32b2y aybtz  *  anbzz l

Matrix multiplication is not commutative. as illustrated bv

*:l: _;lf; l:Exir;x3 ?
*: [; lL: _l:lt:":i:i;

X

X

X

X

4+rxz l  l z  tO l
4  -  2xz l :  L t  8 ]

1 -  4x2 l  l v  -71
1-2Y2] :  L6  -4 ]

Simultaneous linear equations may be solved by use of matrices. For example,
the set

may be written in matrix n

y * a p x 2 * a p . t c a = c 1

1 * a 2 2 x 2 + a n x 3 : C ?

1 * a 3 2 x 2 + a j 3 r 3 = c a

on as

or

A X : C

The inverse of a matrix A I has the property

, L o - t A : A A - r : E

where E is the identity matrix:

If we multiply both sides of AX : C by A-r, we obtain

A - ' A X : X : A - t C

Thus, the solution X of the simultaneous equations is obtained by multiplying c
by the inverse of A. Small matrices may be inverted by hand using Gauss elimina-
tion, and large matrices may be inverted with a computer to obiain the solution
of the simultaneous linear equations.

arz o'.1 l ', I f ., lazz azt 
11xz | 

: 
I r, Iotz a3.rJ  lx3 l  Lcr l

a l t x

azfi

az lx

otati

I  o , ,
I o,-,
lot't

fro ol':i: ' 'l
100 1 l
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Figure D.9.1 Plot of a complex
number.

It AB : 0, B is the null space of A. The null space can be calculated by
hand for a small A matrix or by use of a computer. Correspondingly, BrAT = 0,
where the superscript T indicates the transpose. The transpose Ar of a matrix A
has columns that are taken directly from the rows of A; thus it can be constructed
without any calculations. Thus, Ar is the null space of Br.

D.9 COMPTEXNUMBERS

Acomplexnumberz canbe wri t ten z = x + iy,wherei  :  (-1; trz istheimagi-
nary unit and x and y are real numbers. -r is referred to as the real part of z, and
y is referred to as the imaginary part of z. It is convenient to write x : Re(z )
and y : Im(z). Complexnumbers arise naturally in solving certain quadratic
equations.

Two complex numbers can be summed by adding the real parts and the imag-
inary parts separately:

zr I zz : (x1 + x2) + i(1t1 + y7)

They can be subtracted as well:

zr - z2 : (xr - x) + i(y1 - y2) (D.9.2)

When complex numbers are multiplied, the two quantities are multiplied as bino-
mials and i2 is replaced by -1 to obtain

ztz2 : (xfiz - yly) + i(x2y1 + xg7) (D.e 3)

To divide complex numbers, it is convenient to introduce the complex conju-
gate z* . The complex conjugate z* is obtained by changing i to -i. The complex
conjugate of z = x I iy is z* : x - iy. The product of a complexnumberand
its complex conjugate is a real number. For example,

zz*  =  (x  +  i y ) (x  -  i y )  :  * ' -  i ' y '  :  xz  +  y2 (D.e.4)

The square root of this quantity is referred to as the absolute value of z and is
represented by lz l.

l7l :  (zz.)1/ '  :  (* '  + y') ' ' ' (D.e.s)

The ratio of two complex numbers can be written as a complex number by
multiplying numerator and denominator by the complex conjugate of the denom-
inator. For example, to find the expression for z : (1 + 2r)l(2 + 3i), multiply the
numerator and denominator by Q - 3i) to obtain

( 8 + i )  . 8  1 .
-  ( 4 + 9 )  1 3  1 3 '

(D e.1)

(D.e.6)

A complex number can be represented as a point in a plot of Im(z ) versus
Re(z ), as shown in Fig. D.9.1. The plane of this figure is referred to as the complex
plane. The vector r from the origin to a point in the complex plane makes an
angle 0 with the x axis; this angle is referred to as the phase angle. The vector is
represented by r, and its magnitude is represented by r. It is useful to be able to
write complex numbers in their polar forms. Figure D.9.1 shows that

x : r c o s 9  a n d  v : r s i n O (D.e.7)



Therefore,

z  = r ( c o s 0 + i s i n 0 ) (D.e.8)

The series expansions of e', cos x, and sin x (see Appendix D.2) can be used to
derive Euler's forrnula:

e i e : c o s 0 + i s i n 0

If we substitute this into equation D.9.8, we obtain
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(D.e.e)

(D.e.10)

(D.e.13)

(D.9.14)

z  :  r e to

for which the complex conjugate is

z * : r " - i o  
' ( D . 9 . 1 1 )

Taking the square root of the product zz * yields the absolute value of z, which is
equal to

wt :  r (D.e.r2)

Two relations that are useful in connection with Fourier transforms (Section

15.8)  are

,o rLn l t  :  (g i2mxta  * " - ;z * r la1 l2

,in2J!! : lsi2mxra 
- r-;zmr/o)l2i

D.IO MATHEMATICAL CALCUI-ATIONS
WITH PERSONAL COMPUTERS

The use of mathematical applications in personal computers is producing a
revolutionary change in solving physical chemical problems. These applica-
tions include Mathematica, MathCad, MATLAB, and MAPLE. The existence
of these applications has made it possible to include more difficult problems
in this edition as Computer Problerys. The complete solutions of these prob-
lems in Mathematica are provided in the Solutions Manual and on the web
at http:/lwiley.com/college/silbey. These programs not only make it possible to
solve the particular problems, but they also make it possible to make similar
calculations over different ranges of temperature, pressure, wavelength, etc.,
and to substitute the properties of other substances without one's being an
expert Mathematica programmer. The primary reference on Mathematica is

S. Wolfram, The Mathematica Book,4th ed. New York: Cambridee Universitv Press. 1999.

There are two books on solving physical chemistry problems using Mathematica:

W. H. Cropper, Mathematica Computer Programs for Physical Chemistry. New York:
Springer, 1998.

J. H. Noggle, Physical Chemistry Using Mathemarica. New York: HarperCollins, 1996.
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Several books have been written to help new users of Mathematica get started.
These include

C.-K. Cheung, G. E. Keough, C. Landraitis, and R. H. Gross, Getting Started with Mathe-
matica. Hoboken, NJ: Wiley, 1998.

K. R. Coombes, B. R. Hunt, R. L. Lipsman, J. E. Osborn, and G. J. Stuck. Ifte Mathematica
Primer. New York: Cambridge University Press, 1998.

H. F. W. Hoft and M. H. Hoft, Computing with Mathematica. San Diego: Academic, 1998.
B. F. Torrence and E. A. Torrence, The Sndent's Introduction to Mathematica. New York:

Cambridge University Press, 1999.


