Chap. 4. <u>Physical transformations</u>

Phase - form of matter that is **uniform** throughout in **chemical composition** and **physical state**

e.g.) liquid, gas, different types of crystals, glasses

Phase transition - **spontaneous** conversion between two phases, which occurs at the transition temperature T_{tr} for a given pressure.

Metastable phase - thermodynamically **unstable phase** that persists because the transition is kinetically hindered.

e.g. Diamond, Glass

Phase diagram - shows regions of pressure and temperature at which various phases are thermodynamically stable

Vapour pressure - the pressure of a vapour in equilibrium with the liquid

Sublimation vapour pressure - the pressure of a vapour in equilibrium with the solid

Normal boiling temperature - boiling temperature at 1 atm

Standard boiling temperature - boiling temperature at 1 bar

Phase diagram of CO₂

Positive slope of solid-liquid : high pressure favors solid

Triple point pressure > 1 atm :

liquid cannot exist at normal atmosphereic pressure

Phase diagram of H₂O

Steep negative slope of solidliquid phase line (up to 2k bar) :

high pressure favors liquid (liquid is denser than solid)

Ice VII melts at 100 °C, exists above 25 kbar

Different solid phases (polymorphs) represent different arrangement of water molecules

Helium

Solid and gas phases of helium are never in equilibrium

Solid phase is obtained only at very high pressure

⁴He becomes superfluid at low temperature, zero viscosity

³He - different from ⁴He, but possesses a superfluid phase

Entropy of liquid is **lower** than that of the solid

Phase stability and phase transitions

For one component system,
$$\mu = G_m = G/n$$

 \uparrow
Same for all the
phases at equilibrium

Condition of equilibrium: $dG = (\mu_2 - \mu_1) dn = 0$ for any dn.

 $\frac{\text{Temperature dependence}}{\left(\frac{\partial \mu}{\partial T}\right)_p} = \frac{1}{n} \left(\frac{\partial G}{\partial T}\right)_p = -\frac{S}{n} = -S_m$

 μ decreases as temperature increases

Steeper negative slope for larger entropy

Pressure dependence

$$\left(\frac{\partial \mu}{\partial p}\right)_T = \frac{1}{n} \left(\frac{\partial G}{\partial p}\right)_V = \frac{V}{n} = V_m$$

Increase of pressure results in increase of $~\mu$

 $V_m(1) < V_m(2)$

Increase of pressure increases the transition temperature

Increase of pressure decreases the transition temperature

Effect of external pressure on vapour pressure

 $d\mu(l)=d\mu(g) \quad \begin{array}{l} \mbox{Any change in liquid chemical potential should result} \\ \mbox{in the same change in vapour chemical potential} \end{array}$

Effect of external pressure on vapour pressure

 $d\mu(l)=d\mu(g)$ Any change in liquid chemical potential should result in the same change in vapour chemical potential

At constant temperature pressure applied to vapor $V_m(l)dP = V_m(g)dp = \frac{RT}{p}dp$ pressure applied to liquid $\int_{p^*}^{p+\Delta P} V_m(l)dP = RT \int_{p^*}^p \frac{dp}{p} = RT \ln\left(\frac{p}{p^*}\right)$

Effect of external pressure on vapour pressure

 $d\mu(l)=d\mu(g)~~$ Any change in liquid chemical potential should result in the same change in vapour chemical potential

At constant temperature

$$V_m(l)dP = V_m(g)dp = \frac{RT}{p}dp$$

$$\longrightarrow \int_{p^*}^{p+\Delta P} V_m(l)dP = RT \int_{p^*}^p \frac{dp}{p} = RT \ln\left(\frac{p}{p^*}\right)$$
Pressure to liquid in addition to the vapor pressure
Assume V_m(l) is insensitive to pressure

$$(p + \Delta P - p^*)V_m(l) = RT \ln\left(\frac{p}{p^*}\right)$$
Assume $\Delta P >> (p - p^*) \implies \Delta PV_m(l) \approx RT \ln\left(\frac{p}{p^*}\right)$
 $\implies p \approx p^* e^{\frac{\Delta P}{RT}V_m(l)}$

Determining boundaries in phase diagram

If phases lpha and eta are in equilibrium, $\mu_lpha(p,T)=\mu_eta(p,T)$

 $\implies d\mu_{\alpha}(p,T) = d\mu_{\beta}(p,T)$

Determining boundaries in phase diagram

If phases α and β are in equilibrium, $\mu_{\alpha}(p,T) = \mu_{\beta}(p,T)$ $\implies d\mu_{\alpha}(p,T) = d\mu_{\beta}(p,T)$

 $d\mu_{\alpha}(p,T) = -S_{\alpha,m}dT + V_{\alpha,m}dp = -S_{\beta,m}dT + V_{\beta,m}dp = d\mu_{\beta}(p,T)$

 $(V_{eta,m}-V_{lpha,m})dp=(S_{eta,m}-S_{lpha,m})dT$

Determining boundaries in phase diagram

If phases lpha and eta are in equilibrium, $\mu_lpha(p,T)=\mu_eta(p,T)$

 $\implies d\mu_{\alpha}(p,T) = d\mu_{\beta}(p,T)$

 $d\mu_{lpha}(p,T) = -S_{lpha,m}dT + V_{lpha,m}dp = -S_{eta,m}dT + V_{eta,m}dp = d\mu_{eta}(p,T)$

$$(V_{\beta,m} - V_{\alpha,m})dp = (S_{\beta,m} - S_{\alpha,m})dT$$

$$\uparrow$$

$$\Delta_{trs}V$$

$$\Delta_{trs}S$$

$$rac{dp}{dT} = rac{\Delta_{trs}S}{\Delta_{trs}V}$$
 Clapeyron equation

If $\frac{\Delta_{fus}H}{T\Delta_{fus}V}$ is insensitive to p and T,

$$\int_{p^*}^{p} dp = \frac{\Delta_{fus} H}{\Delta_{fus} V} \int_{T^*}^{T} \frac{dT}{T}$$

$$\implies p = p^* + \frac{\Delta_{fus}H}{\Delta_{fus}V} \ln\left(\frac{T}{T^*}\right) = p^* + \frac{\Delta_{fus}H}{\Delta_{fus}V} \ln\left(1 + \frac{T - T^*}{T^*}\right)$$

$$\approx p^* + \frac{\Delta_{fus} H}{\Delta_{fus} V} \frac{T - T^*}{T^*} \qquad \text{for } T - T^* << T^*$$

Liquid-vapor transition

$$\frac{dp}{dT} = \frac{\Delta_{vap}H}{T\Delta_{vap}V} \xleftarrow{\text{positive}} \text{positive, much larger than} \\ \xleftarrow{\text{that of the solid-liquid}} \\ \text{Boiling temperature is more sensitive to} \\ \text{pressure} \end{cases}$$

Liquid-vapor transition

 $\frac{dp}{dT} = \frac{\Delta_{vap}H}{T\Delta_{vap}V} \xleftarrow{\text{positive}}_{\substack{\text{positive, much larger than that of the solid-liquid transition}}}$ Boiling temperature is more sensitive to

pressure
$$\Delta_{vap}V \approx V_m(g) = \frac{RT}{p}$$

$$\longrightarrow \quad \frac{dp}{pdT} = \frac{d\ln p}{dT} = \frac{\Delta_{vap}H}{RT^2}$$

Clausius-Clapeyron equation

Liquid-vapor transition

 $\frac{dp}{dT} = \frac{\Delta_{vap}H}{T\Delta_{vap}V} \xleftarrow{\text{positive}}_{\substack{\text{positive, much larger than that of the solid-liquid transition}}$

Boiling temperature is more sensitive to pressure $\Delta_{vap}V \approx V_m(g) = \frac{RT}{p}$

Clausius-Clapeyron equation

$$\int_{p^*}^p dp \ln p = \ln(p/p^*) = \int_T^{T^*} dT \ \frac{\Delta_{vap}H}{RT^2} \approx -\frac{\Delta_{vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

 $\Delta_{vap}H$ is assumed to be independent of temperature

$$p = p^* e^{-\chi}$$
 where $\chi = rac{\Delta_{vap} H}{R} \left(rac{1}{T} - rac{1}{T^*}
ight)$

<u>Classification of phase transition (Ehrenfest)</u>

$$\begin{split} \left(\frac{\partial\mu_{\beta}}{\partial p}\right)_{T} &- \left(\frac{\partial\mu_{\alpha}}{\partial p}\right)_{T} = V_{\beta,m} - V_{\alpha,m} = \Delta_{trs}V\\ \left(\frac{\partial\mu_{\beta}}{\partial T}\right)_{p} &- \left(\frac{\partial\mu_{\alpha}}{\partial T}\right)_{p} = -S_{\beta,m} + S_{\alpha,m} = -\Delta_{trs}S = -\frac{\Delta_{trs}H}{T_{trs}} \end{split}$$

(i) First order phase transition (boiling, melting,...)

 $\begin{array}{ll} \Delta_{trs} V \ \text{and} \ \Delta_{trs} H & \text{are finite.} \\ \left(\frac{\partial \mu}{\partial T}\right)_T \ \text{and} \ \left(\frac{\partial \mu}{\partial p}\right)_T & \text{are discontinuous.} \\ C_p & \text{is infinite.} \end{array}$

(ii) Second order phase transition (conducting-superconducting,...)

$$\Delta_{trs} V$$
 and $\Delta_{trs} H$ are zero.
 $\left(\frac{\partial \mu}{\partial T}\right)_T$ and $\left(\frac{\partial \mu}{\partial p}\right)_T$ are continuous C_n is discontinuous.