Chapter 2. Review of Quantum Mechanics

Assume that there is a quantum mechanical state. Then, there is a unique ket $|\cdots\rangle$ or equivalently a bra $\langle\cdots|$

There is an infinite number of ways to create a quantum mechanical state.
For two quantum mechanical states $|\alpha\rangle$ and $|\beta\rangle$
$|\gamma\rangle=C_{1}|\alpha\rangle+C_{2}|\beta\rangle \quad$ corresponds to another quantum mechanical state.

Inner product: $\langle\alpha \mid \beta\rangle$ - complex number, $\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle$
Outer product: $|\alpha\rangle\langle\beta|$ - operator, $\quad(c|\alpha\rangle\langle\beta|)^{\dagger}=c^{*}|\beta\rangle\langle\alpha|$
$(|\alpha\rangle\langle\beta|)(|\gamma\rangle\langle\delta|)=|\alpha\rangle\langle\beta \mid \gamma\rangle\langle\delta|=(\langle\beta \mid \gamma\rangle)|\alpha\rangle\langle\delta|$
$(|\alpha\rangle\langle\beta \mid \gamma\rangle\langle\delta|)^{\dagger}=\langle\beta \mid \gamma\rangle^{*}|\delta\rangle\langle\alpha|=\langle\gamma \mid \beta\rangle|\delta\rangle\langle\alpha|=|\delta\rangle\langle\gamma \mid \beta\rangle\langle\alpha|$

Any operator can be made Hermitian by adding its Hermitian conjugate

$$
|\alpha\rangle\langle\beta|+(|\alpha\rangle\langle\beta|)^{\dagger}=|\alpha\rangle\langle\beta|+|\beta\rangle\langle\alpha|
$$

For any Hermitian operator \hat{A}

$$
e^{i \hat{A}} \text { is an unitary operator. }
$$

Position and momentum operators are Hermitian and satisfy the following fundamental relation: $[\hat{x}, \hat{p}]=i \hbar$

From the above commutator identity, one can show that

$$
\begin{aligned}
& \hat{p}|x\rangle=-\frac{\hbar}{i} \frac{\partial}{\partial x}|x\rangle \quad \text { or } \quad\langle x| \hat{p}=\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x| \\
& \text { Quantum mechanical operation }
\end{aligned}
$$

Commutator relations define properties of operators and it is important to understand simple algebra involving commutators

$$
\begin{aligned}
& {[\hat{A}+\hat{B}, \hat{C}]=[\hat{A}, \hat{C}]+[\hat{B}, \hat{C}]} \\
& {[\hat{A}, \hat{B}]=-[\hat{B}, \hat{A}]} \\
& {[c \hat{A}, \hat{B}]=c[\hat{A}, \hat{B}]} \\
& {[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}}
\end{aligned}
$$

BCH identity:

$$
e^{\hat{A}} \hat{B} e^{-\hat{A}}=\hat{B}+[\hat{A}, \hat{B}]+\frac{1}{2}[\hat{A},[\hat{A}, \hat{B}]]+\cdots+\frac{1}{n!}[\hat{A}, \cdots,[\hat{A}, B] \cdots]+\ldots
$$

Dimension can be extended by direct product - juxtaposition of all the degrees of freedom

Direct product is well defined between any well-defined independent degrees of freedom. Examples are all the cartesian coordinates of different atoms.

Schrodinger's equation in Dirac notation

$$
\begin{aligned}
& \hat{H}|E\rangle=\left(\frac{\hat{p}^{2}}{2 m}+V(\hat{x})\right)|E\rangle=E|E\rangle \\
& i \hbar \frac{\partial}{\partial t}|\alpha ; t\rangle=\hat{H}|\alpha ; t\rangle=\left(\frac{\hat{p}^{2}}{2 m}+V(\hat{x})\right)|\alpha ; t\rangle \\
& |\alpha ; t\rangle=e^{-i \hat{H} t / \hbar}|\alpha ; 0\rangle
\end{aligned}
$$

