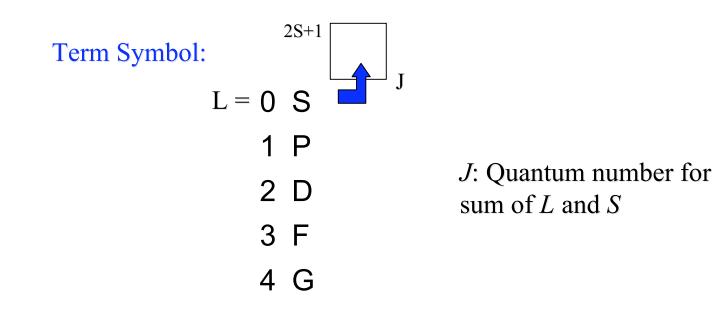
Chapter 4. Atomic Spectroscopy

Hartree Approximation (mean field approximation) - electronelectron repulsion is replaced with average mean field potential. Many electron system is described in terms of hydrogen-like single electron states.

n : principal quantum number (shell)

l, m, s: angular momentum, magnetic momentum (z-component of l), and spin quantum numbers of a single electron


Orbital: specified by *n* and *l*

Configuration - Assignment of electrons to orbitals

L, M, S : quantum numbers for sum over all the electrons

For l_1 and l_2 $l = |l_1 - l_2|, \dots, l_1 + l_2$

Possible combinations of angular momenta and term symbols for two equivalent p electrons.

L	S	J	Term Symbols
2	0	2	$^{1}D_{2}$
1	1	$2,\!1,\!0$	${}^{3}P_{2}, \; {}^{3}P_{1}, \; {}^{3}P_{0}$
0	0	0	1S_0

Hund's rules

- (i) Of the terms arising from equivalent electrons, those with the highest multiplicity lie the lowest in energy.
- (ii) Of these, the lowest is that with the highest value of L.

Lande's interval rule

For less than half-filled orbitals, smaller *J* has lower energy. For more than half-filled orbitals, larger *J* has lower energy.

Selection rules

$$\Delta S = 0$$

$$\Delta L = \begin{cases} \pm 1, 0 & \text{if } L' \neq 0 \\ 1 & \text{if } L' = 0 \end{cases}$$

$$\Delta J = 0, \pm 1 \text{ (no } 0 \leftrightarrow 0 \text{ transition)}$$

This is due to the fact that the transition dipole vector has odd inversion symmetry and that the sum of l_i dtermines the inversion symmetry of the eigenstate.

 $S: s \to p$

 $P: p \to s$

Examples of Atomic Spectra

Laporte's Rule $\sum_{i} l_i$: even \leftrightarrow odd

1. Alkali metal atoms (Li,Na, K, Rb, Cs) - (Closed shell)ns¹

Emission has at least three series in the visible region.

 $egin{aligned} &\Delta n: ext{unrestricted} & D: d o p \ &\Delta l = \pm 1 & (\Delta l = 0 ext{ is forbidden because of} & F: f o d \ & ext{Laporte's rule}) & \Delta J = 0, \pm 1 ext{ except } J = 0
eq J = 0 \end{aligned}$

The principal series in the sodium atom (Na)

 $\begin{array}{c} n \ ^2P_{1/2} \rightarrow 3 \ ^2S_{1/2} & n \geq 3 \\ n \ ^2P_{3/2} \rightarrow 3 \ ^2S_{1/2} & n \geq 3 \\ n=\!\!3 \text{: Sodium D lines: 589.592 nm, 588.995 nm} \end{array}$

Hydrogen atom Ground state (${}^{2}S_{1/2}$): n = 1, l = 0, s = 1/2

Excited states (${}^{2}P_{3/2}, \, {}^{2}P_{1/2}, \, {}^{2}S_{1/2}$): n=2, l=1, s=1/2

Helium atom

Ground state configuration: $1s^2$ Ground state term: $1 {}^{1}S_0$

Excited state configurations: $1s^1np^1, 1s^1nd^1, \ldots$

Excited state terms: $n {}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{1}$ Singlets $n {}^{3}S_{1}, {}^{3}P, {}^{3}D$ Triplets

