Chemistry 76000: Introductory Quantum Chemistry The Graduate Center of the City University of New York Fall 2011

Instructors	Dr. Jianbo Liu Tel: (718) 997-3271(office) (718) 997-3270 (lab) E-mail: jianbo.liu@qc.cuny.edu Webpage: http://chem.qc.cuny.edu/~jliu/Liu_page/Liu_main.htm Office Hours: Thursdays at the Graduate Center RM 4438 & by appointment at Queens College (Office at QC: Science Building B312)		
Lectures	Tuesdays and Thursdays, 10:30 am -11:50 am, RM 8404 at the Graduate Center		
Textbooks	Ira N. Levine, <i>Quantum Chemistry</i> , 6th Ed., Prentice Hall, 2009 (required). Supplementary materials will be provided in class and on line.		
	 Other textbooks: 1. Donald A. McQuarrie and John D. Simon, <i>Physical Chemistry: A Molecular Approach</i>, University Science Books (or Donald A. MaQuarrie, Quantum Chemistry, 2nd Ed, 2008) 2. John P. Lowe and Kirk Peterson, Quantum Chemistry, 3rd Ed, Elsevier 		
Course Description & Learning Goals			
	The goal of this course is to give doctoral graduate students in chemistry a solid understanding of the physical and mathematical aspects of quantum mechanics and molecular electronic structure. A basic familiarity with the concepts covered in undergraduate physical chemistry (e.g. <i>Physical Chemistry</i> by Peter Atkins and Julio De Paula, 8 th Ed., Freeman), and a background in differential and integral calculus are required. Mathematical concepts including differential equations and linear algebra will be developed as needed in the course.		
	It is your responsibility to attend and to be punctual. I will not follow the Levine's textbook exactly. Homework assignments and exams and will be based on my lectures.		
	Detailed learning goals are subdivided into a number of topics as listed in the attached schedule, including understanding of the postulates of quantum mechanism, wavefunctions, operators and Schrödinger equation, the analytical solutions of time-independent Schrödinger equation for simple systems, the approximation methods for complex systems, etc.		

Homework Weekly homework will be assigned every Tuesday (posted on line) and will be collected the following Tuesday. No credits will be given for late homework. You may work together on the homework assignments but the material handed in must be original and not copied from another individual. If duplicate assignments are received, no credits will be given.

Grading	Homework assignments	20 %
	Three in-class exams	40 %
	Final exam	40 %

Exam information

All exams are closed book/notes and no additional material may be consulted other than that provided with the examination sheet. No make-up exams will be given except in cases of documented legitimate reasons for absence. In the event of an excused absence from the final, contact the instructor and/or program office.

Exam I	Lectures covered:	Aug 30 - Sep 15
Exam II	Lectures covered:	Sep 22 - Oct 18
Exam III	Lectures covered:	Oct 27 - Nov 17

The final exam will be comprehensive and will draw from the entire semester's material.

Lecture Schedule and Topics

Date	Lecture Topics	
Aug 30	Postulates and General principles of Quantum Mechanics: Wave Functions and Operators, and Mathematical Background	
Sep 1		
Sep 6		
Sep 8	The Schrödinger Equation	
Sep 13	Analytical Solutions: A Particle in a Box (One-dimensional)	
Sep 15	Analytical Solutions: A Particle in a Box (Two-Dimensional/Three-Dimensional)	
Sep 20	Exam I	
Sep 22	Analytical Solutions, The Harmonia Oscillator and Vibrational Spectroscopy	
Sep 27	Anarytical Solutions. The Harmonic Oscillator and Viorational Spectroscopy	
Oct 4	Follow a Friday Schedule	
Oct 6	Analytical Solutions: The Rigid Rotator, Angular Momentum and	
Oct 11	Rotational Spectroscopy	
Oct 13	Analytical Solutions: Hydrogen Atom and Hydrogenlike Orbitals	
Oct 18		
Oct 20	Exam II	
Oct 25	Review of Mathematics: Determinants, Matrices, Linear Transformations and	
	Matrix Eigenvalue Problem	
Oct 27	Approximation Methods: Variation Method	
Nov 1		
Nov 3	Approximation Methods: Perturbation Theory	
Nov 8		
Nov 10	Helium Atom (I): Variation and Perturbation Treatments of the Ground State	
Nov 15	Thenum Atom (1). Variation and Perturbation Treatments of the Oround State	
Nov 17	Helium Atom (II): Perturbation Treatment of the Excited States	
Nov 22	Exam III	
Nov 24	Thanksgiving recess	
Nov 29	Electron Spin (I): The Spin-Statistics Theorem and the Pauli Exclusion Principle	
Dec 1	Electron Spin (II): Slater Determinants	
Dec 6	Many-Electron Atoms: Hartree-Fock SCF Method and Atomic Terms	
Dec 8	Electronic Structure of Molecules	
Dec 13		
Dec 19	Final Exam (9:30am-12:30 am)	