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Abstract: n-Bu4NI/K2S2O8 mediated C-N coupling between 

aldehydes and amides is reported. A strong electronic effect is 

observed on the aromatic aldehyde substrates. The transformylation 

from aldehyde to amide takes place exclusively when an aromatic 

aldehyde bears electron-donating groups at either the ortho or para 

position of the formyl group, while the cross-dehydrogenative coupling 

dominates in the absence of these groups. Both the density functional 

theory (DFT) thermochemistry calculations and experimental data 

support the proposed single electron transfer mechanism with the 

formation of an acyl radical intermediate in the cross-dehydrogenative 

coupling. The n-Bu4NI/K2S2O8 mediated oxidative cyclization between 

2-aminobenzamide and aldehydes is also reported, with four 

quinazolin-4(3H)-ones prepared in 65-99% yields. 

Introduction 

Imide motifs widely exist in natural products, pharmaceuticals, 

and materials,[1] which has prompted chemists to develop a 

number of synthetic methods for their preparation.[2] The 

traditional synthetic routes focus on the acylation of amides with 

carboxylic acids,[3] acid chlorides,[4] and acid anhydrides.[5] 

However, these methods have limitations, such as the lability of 

the activated acid derivatives, low atom economy, environmental 

pollution, and tedious procedures. Recently, the N-acylation of 

amides by aldehydes or alcohols via cross dehydrogenative 

coupling has attracted great interest. The known methods include 

transition-metal such as copper,[6] iron,[7] rhodium,[8] or 

palladium,[9] and N-heterocyclic carbene (NHC)[10] catalyzed 

oxidative N-acylation of amides by aldehydes (Scheme 1, Eq 1) 

and copper[11] catalyzed oxidative N-acylation of amides by 

alcohols.  

Iodine[12] or persulfate[13] mediated cross dehydrogenative 

coupling[14] reactions have aroused the great interest of chemists. 

These transformations are superior to the classical transition 

metal-catalyzed couplings in terms of their green chemistry 

features including environmental compatibility and economic 

impact. In addition, the iodine or persulfate-mediated cross-

dehydrogenative coupling reactions in general undergo single 

electron transfer pathways, which are different from the classical 

transition metal catalysis and often display different chemical 

reactivity from the latter. Inspired by the rapid progress in the 

iodine and persulfate-mediated oxidative cross-couplings in 

recent years and the lack of research on the iodine or persulfate 

mediated imide coupling, we have explored the imide synthesis 

by an n-Bu4NI/K2S2O8 mediated cross dehydrogenative C–N 

coupling between amides and aldehydes (Scheme 1, Eq 2). 

Herein, we report the details of our study.  

Scheme 1. Synthesis of imides by cross-dehydrogenative coupling between 

aldehydes and amides. 

Results and Discussion 

Initially, the coupling of acetamide and benzaldehyde was 

explored in the presence of either 10 mol% of n-Bu4NI or 2.0 

equivalents of K2S2O8 (Table 1, entries 1–2). No imide product 

was observed in either case. On the other hand, N-

acetylbenzamide (1a) was obtained in a 27% yield in the presence 

of 2.0 equivalents of ammonium peroxydisulfate ((NH4)2S2O8) 

(Table 1, entry 3). The combination of one equivalent of 18-crown-

6 and 2.0 equivalents of K2S2O8 led to a 43% yield of 1a (Table 1, 

entry 4). The combination of 10 mol% of n-Bu4NI and 2.0 

equivalents of K2S2O8 further enhanced the yield of 1a to 66% 

(Table 1, entry 5). Under the same conditions, other 

tetrabutylammonium halides (n-Bu4NCl and n-Bu4NBr) only led to 

extremely low yields (Table 1, entries 6–7). No products were 

observed if other peroxides such as tert-butyl hydroperoxide 

(TBHP), cumene hydroperoxide (CHP), hydrogen peroxide 

(H2O2), and benzoyl peroxide (DBPO) were used (Table 1, entries 

8–11). Lower yields of 1a were obtained in other solvents such as 

toluene, THF and DMF (Table 1, entries 12–14). No product 1a 
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was observed in DMSO (Table 1, entry 15). When the amount of 

n-Bu4NI was raised to 20 mol%, the yield of 1a dropped to 50% 

(Table 1, entry 16). The reaction time was not optimized, but we 

later found that the yield of 1a reached a maximum after 

approximately 12 hours. 

Table 1: Optimization of the cross dehydrogenative coupling between 

acetamide and benzaldehyde.[a] 

 

 

Entry PTC 

(10 mol%) 

Peroxide 

(2.0 equiv) 

Solvent Yield [%][b] 

1 n-Bu4NI - CH3CN NR 

2 - K2S2O8 CH3CN NR 

3 - (NH4)2S2O8 CH3CN 27 

4 18-crown-6[c] K2S2O8 CH3CN 43 

5 n-Bu4NI K2S2O8 CH3CN 66 

6 n-Bu4NCl K2S2O8 CH3CN 8 

7 n-Bu4NBr K2S2O8 CH3CN 2 

8 n-Bu4NI TBHP CH3CN ND[d] 

9 n-Bu4NI CHP CH3CN NR 

10 n-Bu4NI H2O2 CH3CN NR 

11  n-Bu4NI  DBPO CH3CN NR 

12  n-Bu4NI K2S2O8 toluene 47 

13[e] n-Bu4NI K2S2O8 THF 51 

14  n-Bu4NI K2S2O8 DMF 23 

15  n-Bu4NI K2S2O8 DMSO NR 

16[f] n-Bu4NI K2S2O8 CH3CN 50 

 [a] General procedure: The catalyst (0.1 mmol, 10 mol%), peroxide (2.0 mmol, 

2.0 equiv), acetamide (59.0 mg, 1.0 mmol, 1.0 equiv), benzaldehyde (127.2 mg, 

1.2 mmol, 1.2 equiv), and solvent (7 mL) were added in a 20 mL glass vial. The 

reaction mixture was sealed with a pressure relief cap, and stirred at 80 °C for 

20 h. [b] Isolated yields after column chromatography. [c] One equiv. of 18-

crown-6 (264.3 mg, 1.0 mmol, 1.0 equiv) was added. [d] No 1a was detected in 

the reaction mixture, and benzoic acid was obtained. [e] The reaction was 

carried out at 60 °C. [f] 20 mol% of n-Bu4NI was added instead of 10 mol%. 

After optimizing the reaction conditions, we investigated the 

scope of the aldehydes in the cross-dehydrogenative coupling 

with benzamide and observed a strong electronic effect on the 

aromatic aldehyde substrates. When an aryl aldehyde bears an 

electron-donating group at either the para or ortho position of the 

formyl group, such as p-anisaldehyde, o-anisaldehyde, p-

tolualdehyde, 4-hydroxybenzaldehyde, 2-hydroxybenzaldehyde 

and thiophene-2-carbaldehyde, the reaction all exclusively led to 

the transformylation product 2 (Table 2). Among all the aryl 

aldehydes examined, p-anisaldehyde afforded the highest yield of 

2.[15] In the cases where the transformylation products were 

obtained in low yields, the unreacted amides were recovered. At 

the same time, the rest of the aldehydes were oxidized to the 

corresponding carboxylic acids. 

Table 2: n-Bu4NI/K2S2O8-Mediated transformylation from electron-rich aromatic 

aldehydes to benzamide.[a] 

 

[a] General procedure: n-Bu4NI (73.8 mg, 0.2 mmol, 20 mol%), K2S2O8 (540.6 

mg, 2.0 mmol, 2.0 equiv), benzamide (121.1 mg, 1.0 mmol, 1.0 equiv), aldehyde 

(1.2 mmol, 1.2 equiv), and CH3CN (7 mL) were added in a 20 mL glass vial. The 

reaction mixture was sealed with a pressure relief cap and stirred at 80 °C for 

24 h. [b] Isolated yields after column chromatography. 

 

When benzaldehyde (Table 3, 1a, 1e-1i, 1l-1r), ortho-

bromobenzaldehyde (Table 3, 1j), or an aliphatic aldehyde (Table 

3, 1f obtained in 73% yield) was employed, only a small amount 

of transformylation product (less than 10%) was observed, and 

the cross-dehydrogenative coupling product, imide, predominated. 

On the other hand, when the aromatic aldehydes bearing strong 

electron-withdrawing substituents were employed, such as methyl 

4-formylbenzoate (Table 3, 1b), 4-nitrobenzaldehyde (Table 3, 

1c), and picolinaldehyde (Table 3, 1d), the reactions all 

exclusively led to the cross-dehydrogenative coupling products – 

imides. m-Anisaldehyde led to a mixture of the transformylation 

and cross-dehydrogenative coupling products almost in equal 

amounts (Table 3, 1k). A broad scope of amides was well 

accommodated in the coupling, including alkyl (Table 3, 1a-i), 
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alkenyl (Table 3, 1p-q), and aromatic amides (Table 3, 1j-o). Both 

the electron-donating group such as methoxy (Table 3, 1m), and 

the electron-withdrawing group such as fluorine (Table 3, 1o) 

were compatible on the aromatic amides. Secondary amide 

(pyrrolidin-2-one) was also well accommodated in the coupling 

with benzaldehyde affording the imide product in a 62% yield 

(Table 3, 1r). It is worth noting that imide 1f was successfully 

prepared in comparable yields by the coupling of two sets of 

different amide and aldehyde substrates, which offers chemists 

more flexibility in the choice of the starting materials when 

employing the current protocol to synthesize imides.  

Table 3: n-Bu4NI/K2S2O8-Mediated cross dehydrogenative coupling between 

amides and aldehydes.[a,b] 

 

[a] General procedure: n-Bu4NI (36.9 mg, 0.1 mmol, 10 mol%), K2S2O8 

(540.0 mg, 2.0 mmol, 2.0 equiv), amide (1.0 mmol, 1.0 equiv), aldehyde (1.2 

mmol, 1.2 equiv), and CH3CN (7 mL) were added to a 20 mL glass vial. The 

reaction mixture was sealed with a pressure relief cap, and stirred at 80 °C for 

20 h. [b] Isolated yields after column chromatography. [c] A trace amount of 

transformylation product (less than 10%) was observed by analysis of the crude 

1H NMR spectra but was not isolated and characterized.  [d] 3-

Phenylpropanamide (149.2 mg, 1.0 mmol) and benzaldehyde (106.1 mg, 1.2 

mmol) were added. [e] Product 2 was isolated in an 8% yield together with 1j. 

[f] Product 2 was isolated in a 16% yield together with 1k. [g] Benzamide (121.1 

mg, 1.0 mmol) and 3-phenylpropanal (134.2 mg, 1.2 mmol) were added.  
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The reaction between 2-aminobenzamide and aldehydes, 

however, resulted in cyclization products – quinazolin-4(3H)-ones 

(Table 4, 3) instead of imides. Both aromatic and aliphatic 

aldehydes were well accommodated in the reaction with 2-

aminobenzaimde (Table 4, 3a-d). It is worth noting that p-

anisaldehyde also led to the quinazolin-4(3H)-one product in a 

65% yield (Table 4, 3d), which suggests the cyclization undergoes 

a different mechanistic pathway than the n-Bu4NI/K2S2O8 

mediated C-N coupling between aldehydes and amides 

discussed in Tables 2 and 3. The former is believed to undergo 

an imine formation between aldehyde and the amino group of 2-

aminobenzamide, followed by an intramolecular cyclization and 

oxidation.[16] 

Table 4: n-Bu4NI/K2S2O8-Mediated synthesis of quinazolin-4(3H)-ones from 

aldehydes and 2-aminobenzamide.[a,b] 

 
[a] General procedure: n-Bu4NI (36.9 mg, 0.1 mmol, 10 mol%), K2S2O8 

(540.0 mg, 2.0 mmol, 2.0 equiv), 2-aminobenzamide (136.2 mg, 1.0 mmol, 1.0 

equiv), aldehyde (1.0 mmol, 1.0 equiv), and CH3CN (7 mL) were added in a 20 

mL glass vial. The reaction mixture was sealed with a pressure relief cap, and 

stirred at 80 ℃ for 20 h. [b] Isolated yields after column chromatography.  

In order to gain more insights into the cyclization reaction, we 

examined the reaction between 2-aminobenzamide and 

benzaldehyde in the absence of n-Bu4NI and K2S2O8 and 

obtained 2,3-dihydroquinazolin-4(1H)-one (4) in a 64% yield 

(Scheme 2). When 4 was subjected to our optimized cross-

dehydrogenative coupling conditions, quinazolin-4(3H)-one (3a) 

was obtained in a 90% yield. Therefore, we believe the cyclization 

between 2-aminobenzamide and aldehydes undergoes a reaction 

pathway similar to that reported in the literature,[16] including the 

condensation of primary amines with aldehydes to form imines, 

and subsequent intramolecular cyclization and oxidation. 

 

Scheme 2. Synthesis of 2,3-dihydroquinazolin-4(1H)-one (4) and n-

Bu4NI/K2S2O8-mediated oxidation of 4 to 3a. 

The literature reports indicated that n-Bu4NI and K2S2O8 

mediated reactions usually take place via single electron transfer 

mechanisms.[17] When three equivalents of (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO) were added to the 

coupling reaction between benzamide and benzaldehyde, a 

benzoyl-TEMPO adduct (5) was obtained in an 11% yield (Eq 3), 

while the imide coupling was completely inhibited.  

 

To gain more insights into the reaction mechanism, we also 

carried out DFT calculations (see the supporting information for 

details). The calculated DFT reaction enthalpies reflected the 

endo- and exothermicity for each elementary step, from which the 

probable rate-limiting step(s) may be singled out. The identified 

endothermic steps (i.e. the homolysis of peroxydisulfate anion, 

and the nucleophilic acyl substitution between benzoic sulfuric 

anhydride anion B and amides, see Scheme 3; and the oxidation 

of p-anisaldehyde to a phenyl cation radical C by a sulfate anion 

radical, see Scheme 4) are consistent with the fact that the 

reactions only start at an elevated temperature (80 ℃).  

Based on our experimental data, DFT calculations,[18] and the 

prior literature reports,[19] a plausible mechanism for the cross 

dehydrogenative coupling between amides and aldehydes is 

described in Scheme 3. First, the more soluble 

bis(tetrabutylammonium) peroxydisulfate is generated from n-

Bu4NI and K2S2O8, which undergoes homolytic cleavage 

producing sulfate anion radical at the elevated temperature. The 

sulfate anion radical abstracts the formyl hydrogen from the 

aldehyde resulting in an acyl radical A and a bisulfate anion. A 

reacts with a second equivalent of sulfate anion radical forming 

benzoic sulfuric anhydride[20] anion B, which undergoes a 

nucleophilic acyl substitution with amides leading to the imide 

product.   
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Scheme 3. Proposed mechanism for the n-Bu4NI/K2S2O8-mediated cross 

dehydrogenative coupling between aldehydes and amides. 

On the other hand, since the sulfate anion radical is a well-

known strong oxidant,[13] in the presence of electron-rich aromatic 

aldehydes such as p-anisaldehyde, the sulfate anion radical first 

oxidizes p-anisaldehyde to a phenyl cation radical (C). A second 

equivalent of sulfate anion radical then adds to the ipso position 

of the formyl group forming an arenium ion (1-formyl-4-

methoxycyclohexa-3,5-dien-2-ylium-1-yl sulfate) D, which is 

stabilized by the electron-donating para-methoxy group. A 

subsequent nucleophilic acyl substitution between D and amide 

takes place at the formyl group leading to the formyl imide and 4-

methoxyphenyl hydrogen sulfate (6). 

 

Scheme 4. Proposed mechanism for the n-Bu4NI/K2S2O8-mediated 

transformylation from p-anisaldehyde to primary amides.  

Conclusion 

In summary, a n-Bu4NI/K2S2O8 mediated C–N coupling 

between aldehydes and amides is reported. The reaction takes 

place via a single electron transfer mechanism, employing 

inexpensive and user-friendly reagents. A broad scope of amide 

substrates is well accommodated in the coupling reaction, but the 

aldehyde substrates have displayed a strong electronic effect. 

Aliphatic and electron-neutral or -deficient aromatic aldehydes 

predominantly undergo the cross dehydrogenative coupling 

pathway forming imides. On the other hand, the aromatic 

aldehydes bearing electron-donating groups at either the ortho or 

para position of the formyl group exclusively go through the 

transformylation pathway forming formyl imides. Both the 

experimental data and DFT calculations support the proposed 

mechanism with the formation of an acyl radical intermediate in 

the cross-dehydrogenative coupling. Quinazolin-4(3H)-ones were 

also prepared by the cyclization between aldehydes and 2-

aminobenzamide under the reported oxidative coupling 

conditions, but via a different mechanistic pathway. More n-

Bu4NI/K2S2O8 mediated cross-coupling reactions are under 

investigation in our laboratory and will be reported in due course. 

Experimental Section 

General procedure for the preparation of imides (1) via n-

Bu4NI/K2S2O8-mediated cross-dehydrogenative coupling 

between amides and aldehydes. An oven-dried 20 mL glass 

reaction vial was charged with amide (1.0 mmol, 1.0 equiv), 

aldehyde (1.2 mmol, 1.2 equiv), tetrabutylammonium iodide (36.9 

mg, 0.1 mmol, 10 mol%), potassium persulfate (540.6 mg, 2.0 

mmol, 2.0 equiv), and anhydrous acetonitrile (7 mL). The reaction 

mixture was sealed with a pressure relief cap and stirred at 80 °C 

for 20 h. The reaction mixture was diluted with 20 mL of ethyl 

acetate and washed with saturated aqueous NaHCO3 solution (20 

mL). The aqueous phase was extracted with diethyl ether (2 × 15 

mL). The combined organic layers were dried over anhydrous 

MgSO4 and concentrated using a rotary evaporator under 

reduced pressure (20 mmHg). The residue was purified by flash 

column chromatography on silica gel (eluent: hexanes/ethyl 

acetate) to afford the corresponding products 1. 

Supporting Information  

The general procedure for the coupling reaction, the 1H, 13C NMR 

data and spectra, and the Density Functional Theory (DFT) 

thermochemistry calculations for the proposed mechanism that 

support the findings of this study are available in the 

supplementary material of this article.  
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An n-Bu4NI/K2S2O8-mediated substrate-dependent C-N coupling between aldehydes and amides is reported. When an aromatic 

aldehyde bears electron-donating groups at either the ortho or para position of the formyl group, a transformylation takes place 

exclusively. Without these groups, a cross-dehydrogenative coupling dominates. Furthermore, when 2-aminobenzamide is employed, 

only quinazolin-4(3H)-ones are obtained regardless of the aldehyde used. 
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