QUEENS COLLEGE MATHEMATICS DEPARTMENT

FINAL EXAM $2\frac{1}{2}$ HOURS

Mathematics 122

Fall 2015

INSTRUCTIONS: ANSWER ALL QUESTIONS. SHOW ALL WORK

- 1) a) Given two points P(5, 1) and Q(3, -3):
 - i) Find an equation for line \overrightarrow{PQ} .
 - ii) Find an equation for the line perpendicular to \overrightarrow{PQ} that passes through the point (2, 4).
 - iii) Find an equation for the circle that has points *P* and *Q* as endpoints of a diameter.
 - b) Show that the equation $x^2 + 6x + y^2 4y 3 = 0$ represents a circle and find the center and radius of the circle. Then sketch its graph.
- 2) a) Given the function $f(x) = x^2 + 3x$, compute i) f(-2) ii) f(1)
 - b) Given the piecewise function $g(x) = \begin{cases} 2 & \text{if } x \le -1 \\ 3x 1 & \text{if } x > 1 \end{cases}$, compute i) g(-3) ii) g(-1) iii) g(2)
 - c) For the function $F(x) = x^2 + 4x + 3$, find i) F(a)
 - i) F(a + h)
 - iii) the difference quotient $\frac{F(a+h)-F(a)}{h}$, $h \neq 0$
- 3) Sketch a graph of each function by starting with the graph of a standard function and applying transformations. Label the coordinates of any vertex, *x*-intercept(s), and *y*-intercept. Write an equation of any vertical and horizontal asymptote where appropriate.
 - a) $f(x) = x^2 4$
 - b) $f(x) = \sqrt{x-3}$
 - c) f(x) = -|x+1|-2
 - d) $f(x) = \frac{1}{x-2} + 1$
- 4) a) For $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{2}{x}$, find the composite functions $(f \circ g)(x)$ and $(g \circ f)(x)$. For each composite, find its domain.
 - b) For $H(x) = \frac{x^2}{x^2+3}$, find functions f(x) and g(x) such that $(f \circ g)(x) = H(x)$. c) For $F(x) = \frac{2}{x-1}$,
 - i) find $F^{-1}(x)$

ii) use the inverse function property to show that $(F \circ F^{-1})(x) = (F^{-1} \circ F)(x)$

- 5) Given the quadratic function $f(x) = x^2 + 4x + 5$:
 - a) Write f(x) in standard form and find its vertex.
 - b) Sketch the graph of f(x).
 - c) Find the minimum value of f(x).

- 6) A rectangular field is to be constructed using 600 feet of fencing. An interior fence that runs parallel to one of the exterior fences divides the field into two parts.
 - a) Find a function that models the area of the field in terms of its width *x*.
 - b) What are the dimensions of the field that has the largest area?
 - c) What is the maximum area of the field?
- 7) Sketch a graph of the polynomial function $f(x) = x^3 x^2 12x$. Make sure the graph shows all intercepts. Indicate its behavior as x gets very positive and as x gets very negative.
- 8) a) Without the use of a calculator, evaluate $\log_6 12 + \log_6 8 2\log_6 4$
 - b) Write log $\frac{x^2\sqrt{3x-1}}{x+2}$ as a sum & difference of logarithms.
 - c) Solve for x: $\log_2(x-3) + \log_2(x-6) = 2$
 - d) Solve for *x*: $81^{1-x} = 27^{x-1}$
 - e) Sketch the graph of $f(x) = 2^{x+1} 1$. Label its x- and y-intercept and its asymptote.
- 9) a) Without the use of a calculator, evaluate $\sin 43^{\circ} \cos 17^{\circ} + \cos 43^{\circ} \sin 17^{\circ}$
 - b) Prove the following trigonometric identities:
 - i) $\tan x + \cot x = \sec x \csc x$
 - ii) $\frac{\sec^2 x 1}{\tan x \sin x} = \sec x$
 - c) Sketch the graph of $f(x) = 3 \cos 2x$ on the interval [0, 2π]. Label all x- and y-intercepts of the graph.
- 10) Given $\cos A = -\frac{8}{17}$, where $\measuredangle A$ is in quadrant II, and $\tan B = \frac{3}{4}$, where $\measuredangle B$ is in quadrant III, find:
 - a) tan A
 - b) $\cos(A+B)$
 - c) sin 2*B*