QUEENS COLLEGE DEPARTMENT OF MATHEMATICS

Final Examination

 $2\frac{1}{2}$ Hours

Mathematics 122 Fall 2017

<u>Instructions:</u> <u>Answer all the questions and show all work in the blue book.</u>

- Given $f(x) = \sqrt{x+9}$ and $g(x) = (x-1)^2$. 1.
 - Sketch the graph of f(x).
 - Use the graph of f(x) to sketch the graph of $f^{-1}(x)$ on the same coordinate axes. Show b) clearly x- and y-intercepts.
 - c) Find an equation for $f^{-1}(x)$ and determine the domain and range of $f^{-1}(x)$.
 - d) Evaluate $(g \circ f)(27)$.
- Let $f(x) = 3 4x^2$ and g(x) = 5x 6. 2.
 - a) Find $\frac{f(a+h)-f(a)}{h}$ for $h \neq 0$, and simplify. b) Find $(f \circ g)(x)$ and simplify.
- 3. Determine the domain for each of the following functions.

 - b)

 - $h(t) = \frac{t+7}{-t^2+t+2}$ $y = \frac{4-x}{\sqrt{4x+2}}$ $g(x) = 3\log(x-4)$ $h(\theta) = 2\sin\left(\theta + \frac{\pi}{2}\right)$
- Let $f(x) = -x^2 + 4x + 5$. 4.
 - Express in standard form and find the vertex.
 - b) Sketch a graph of the function.
 - State clearly the maximum or minimum value, *x* and *y*-intercepts, and the domain and c) range of the function.
- 5. Evaluate without using a calculator and show all work.
 - $\sin^{-1}\left(\tan\frac{\pi}{4}\right)$
 - $\sec\left(\frac{16\pi}{3}\right)$ b)
 - $\log 2 \log 5 + \log 250$ c)
 - $\cos 100^{\circ}\cos 70^{\circ}+\sin 70^{\circ}\sin 100^{\circ}$ d)
 - $e^{2 \ln 5}$

- 6. Solve for x (Round answers to 5 decimal places where necessary.)
 - $9 = e^{2x}$ a)
 - $\log_2(x-1) + \log_2(x+2) = 2$ 5^x = 3^{x+1} b)
 - c)
 - $2\cos^2 x = \sin x + 1$, $[0, 2\pi]$ d)
- 7. Sketch the graph of each function. Show clearly all intercepts and asymptotes if applicable.
 - $y = e^{x+1} + 2$
 - b) $g(\theta) = 3\cos(2\theta)$ on the interval $[0,2\pi]$ c) $y = 8 (x 2)^3$ d) $y = \frac{-1}{x-2} + 1$
- 8. Verify each of the following trigonometric identities:
 - $2 \tan x \sec x = \frac{1}{1 \sin x} \frac{1}{1 + \sin x}$ $\csc x \sec x = \tan x + \cot x$ a)
- If $\cos A = -\frac{4}{5}$ where *A* is in Quadrant III, and $\sin B = -\frac{5}{13}$ where *B* is in Quadrant IV. Evaluate 9. the following:
 - a) $\cos 2A$
 - sin(A B)b)
 - $\sec B$ c)
 - d) tan 2B
- A farmer has 2,400 ft of fencing and wants to fence off a rectangular area and divide it into 10. four pens with fencing parallel to one side of the rectangle (see the figure below.) Find a function that models the total area of the four pens in terms of x.

x	x	х	х	x