
Department of Mathematics, Queens College
Math 141 Final Exam, Spring 2017

� The exam has three parts.
� You have 150 minutes to answer the questions.
� Show all your work in your booklet.

PART I [10 POINTS]. WARM-UP!

The graph of a function f on the interval Œ�8; 8� is shown below:
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Evaluate each of the following. If the result is˙1 or does not exist, so state.

(i) lim
x!�5

f .x/ (ii) lim
x!�3

f .x/ (iii) lim
x!1

f .x/ (iv) lim
x!3

f .x/ (v) f .3/

(vi) lim
x!C1

f .x/ (vii) lim
x!�1

f .x/ (viii) f 0.�1/ (ix) f 0.1/ (x) f 0.3/

PART II [32 POINTS]. CLEARLY WRITE THE LETTER OF THE CORRECT ANSWER IN YOUR
BOOKLET. YOU MUST SHOW HOW YOU ARRIVE AT YOUR DECISION.

1. lim
x!0

p
1 � x � 1

x

(A) is 0 (B) is
1

2
(C) is �

1

2
(D) does not exist

2. lim
x!3�

x � 4

x2 � 9

(A) isC1 (B) is �1 (C) is 0 (D) does not exist

3. If the function f .x/ D

8̂<̂
:

sin.ax/

x
for x ¤ 0

5a � 1 for x D 0

is continuous at x D 0, then a is

(A) �4 (B) 4 (C) �
1

4
(D)

1

4

4. The limit lim
h!0

3
p

8C h � 2

h
represents the derivative f 0.a/, where

(A) f .x/ D 3
p

x, a D 2 (B) f .x/ D 3
p

x, a D 8

(C) f .x/ D 3
p

8C x, a D 2 (D) f .x/ D 3
p

8C x, a D 8

(continued on the other side)



5. Suppose f is a differentiable function such that f .0/ D 1 and f .10/ D 1. Then, there must be
a point c in the interval .0; 10/ for which

(A) f 0.c/ D 0 (B) f 0.c/ D 10 (C) f 0.c/ D
1

10
(D) f 0.c/ D 9

6. If " is small, the best linear approximation to the volume of a cube of side-length 10C " is

(A) 1000 (B) 1000C 100 " (C) 1000C 200 " (D) 1000C 300 "

7. My calculator suggests that the absolute maximum of the function f .x/ D
sin x

x2 C 1
on the

interval .�1;1/ is about

(A) 0:431 (B) 0:433 (C) 0:435 (D) 0:437

8. The position of an object moving along a straight line is given by s D t2 cos t , where s is
measured in feet and the time t is measured in seconds. The initial acceleration of the object in
ft/sec2 is

(A) 2 (B) 1 (C) 0 (D) �1

PART III [58 POINTS]. SOLVE THE FOLLOWING 5 PROBLEMS.

Problem 1. [10 points] Show, only using appropriate theorems, that the equation

x5
C 2x C 1 D 0

has a unique solution. Then use your calculator to estimate this solution to 3 decimal places.

Problem 2. [12 points] In each case, find the derivative
dy

dx
:

(i) y D
.x2 � 1/2

x3 C 1
(ii) y D

x

2
C

2

x
C tan.5x/ (iii) y3

C sin.xy/ D x2

Problem 3. [10 points] A video display shows a right triangle whose base is decreasing at the rate
of 0:2 cm/sec and whose height is increasing at the rate of 0:3 cm/sec. How fast is the area of this
triangle changing at the moment when the base is 5 cm and the height is 12 cm? Is the area of the
triangle increasing or decreasing at that moment?

Problem 4. [16 points] Consider the function f .x/ D x4 � 16x3 C 2000.

(i) Write the formulas for f 0 and f 00 and use them to find the critical point(s) and possible
inflection point(s) of f .

(ii) Determine the intervals on which f is increasing or decreasing, and the intervals on which
f is concave up or concave down. (You may simply put this information in a table if you
wish.)

(iii) Classify each critical point of f found in (i) as a local maximum, local minimum, or neither.
Also, list all the inflection points of f .

(iv) Use your findings in (i)-(iii) to sketch the graph of f .

Problem 5. [10 points] Use methods of calculus to find the coordinates of the point on the curve
y D x3=2 that is closest to the point .20; 0/.
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