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Instructions: Answer all questions. Show all work.

1. Find the following integrals:

(a)
∫ π/3
0

t · cos(2t)dt

(b)
∫

cosx · cot2 xdx

(c)
∫

dx
x
√
1+x2

2. Write the form of the partial decomposition of the given function. Do not deter-
mine the numerical values of the coefficients.

1

(x2 − 1)(x− 1)(x2 + 4x + 4)(x2 + 2x + 4)2
.

3. Determine whether each integral is convergent or divergent.

(a)
∫ 2

−1
1

5√1−xdx

(b)
∫∞
−∞

1
x2+4x+6

dx

4. Determine whether each sequence {an} is convergent or divergent. If it converges,
find its limit.

(a) an = tan−1(n2+1)

n1/3

(b) an = (−1)n · n4

n3−17

(continued on the back)



5. Determine whether each series is absolutely convergent, conditionally convergent,
or divergent.

(a)
∑∞

n=1
n3−n+12
n4+n3+1

(b)
∑∞

n=1
5n−n
n!

(c)
∑∞

n=2
(−1)n
n lnn

(d)
∑∞

n=1(−1)n 1
101/n

6. For what values of x does the series
∞∑
n=1

(log2 x)n

converge?

7. Let f(x) = x3ex
2
.

(a) Find the Maclaurin series for f(x) and its radius of convergence.

(b) Find f (7)(0).

8. Use l’Hospital’s Rule to find the limits.

(a) limx→0
x2

e3x−e2x

(b) limx→∞
(
1 + 1

ex

)x

9. Find the sum of the series
∞∑
n=1

3

n(n + 2)

by expressing the n-th partial sum sn as a telescoping sum.
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