QUEENS COLLEGE Department of Mathematics Final Examination $2\frac{1}{2}$ Hours

Mathematics 143

Fall 2017

Instructions. Answer each question. Show your work and justify your answers. Partial credit will be awarded for relevant work.

1. Find each of the following integrals. Assume that k is a positive constant.

a.
$$\int \sin^4 x \, \cos^3 x \, dx$$

b. $\int \frac{20}{(x+3)(x^2+1)} \, dx$
c. $\int \frac{x^2}{\sqrt{k^2 - x^2}} \, dx$

- 2a. Find the integral $\int \frac{\ln x}{x^2} dx$.
- b. Decide whether the improper integral $\int_{e}^{\infty} \frac{\ln x}{x^2} dx$ is convergent or divergent. If convergent, evaluate without the use of a calculator.
- 3a. For $n \ge 1$, derive a reduction formula for the definite integral $I_n = \int_1^e (\ln x)^n dx$ in terms of $I_{n-1} = \int_1^e (\ln x)^{n-1} dx$ by using integration by parts.
- b. Given that $I_1 = 1$, evaluate $I_2 = \int_1^e (\ln x)^2 dx$ in terms of e. Do not use the calculator.
- c. Check your answer to part **b** by evaluating the integral on your calculator. (Include the calculator syntax that you used.)
- 4. Let $\tan^{-1}(x)$ be the inverse tangent function, also denoted $\arctan(x)$.
- a. Write the geometric series expansion of $\frac{1}{1+x^2}$. What is the interval of convergence?
- b. Find the Taylor series expansion for $\tan^{-1}(x)$, centered at 0 (also known as the Maclaurin series). Suggestion. Use $\tan^{-1}(x) = \int \frac{1}{1+x^2} dx$.
- c. Calculate (to 10 decimal places) the partial sum s_{20} of 20 terms of the Taylor series expansion for $\tan^{-1}(x)$ in part b when $x = 1/\sqrt{3}$. (Include the calculator syntax you used.)
- d. Find the numerical value of $6 \cdot s_{20}$ and explain whether your answer is reasonable.
- 5a. Decide whether the sequence $\{(n+1)^{1/n}\}$ is convergent or divergent. Justify your answer. If convergent, please evaluate the limit.
- b. Decide whether the series $\sum_{n=1}^{\infty} (n+1)^{1/n}$ is convergent or divergent. Justify your answer.

6. Let $S_n = \sum_{k=0}^n \frac{4(-1)^k}{2k+1} = \frac{4}{1} - \frac{4}{3} + \dots + (-1)^n \frac{4}{2n+1}.$

- a. Evaluate S_{150} and S_{151} to 2 decimal places. (Include the calculator syntax you used.)
- b. Prove that the series $\sum_{k=0}^{\infty} \frac{4(-1)^k}{2k+1}$ is convergent.
- c. Explain why the sum of the series in part b lies between S_{150} and S_{151} .
- d. Is the series in part b absolutely convergent? Justify your answer.

7. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{n^2 + 1}{5^n} (x+2)^n$$

- a. Find the center and the radius of convergence of the power series for f(x) above.
- b. Find a power series for the derivative f'(x) with the same center as in part a. What is the radius of convergence of the power series for f'(x)?
- 8. Let $T_n(x)$ be the Taylor polynomial of degree n with center at 0 for $F(x) = \sqrt{4-x}$ and let $R_n(x) = F(x) T_n(x)$.
- a. Write a general remainder formula for $R_n(x)$ according to Taylor's theorem.
- b. Find $T_2(x)$.
- c. Find a numerical bound for $|F(x) T_2(x)|$, valid for all x such that $0 \le x \le 2$.
- d. Find the first 3 non-zero terms in the Taylor series for $G(x) = \sqrt{4 3x^3}$, center at 0.