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Instructions. Answer each question. Show your work and justify your answers. Partial credit
will be awarded for relevant work.

1. Find each of the following integrals. Assume that k is a positive constant.

a.

∫
sin4 x cos3 x dx b.

∫
20

(x + 3)(x2 + 1)
dx c.

∫
x2√

k2 − x2
dx

2a. Find the integral

∫
lnx

x2
dx.

b. Decide whether the improper integral

∫ ∞
e

lnx

x2
dx is convergent or divergent. If convergent,

evaluate without the use of a calculator.

3a. For n ≥ 1, derive a reduction formula for the definite integral In =

∫ e

1
(lnx)n dx in terms

of In−1 =

∫ e

1
(lnx)n−1 dx by using integration by parts.

b. Given that I1 = 1, evaluate I2 =

∫ e

1
(lnx)2 dx in terms of e. Do not use the calculator.

c. Check your answer to part b by evaluating the integral on your calculator. (Include the
calculator syntax that you used.)

4. Let tan−1(x) be the inverse tangent function, also denoted arctan(x).

a. Write the geometric series expansion of 1
1+x2 . What is the interval of convergence?

b. Find the Taylor series expansion for tan−1(x), centered at 0 (also known as the Maclaurin

series). Suggestion. Use tan−1(x) =

∫
1

1 + x2
dx.

c. Calculate (to 10 decimal places) the partial sum s20 of 20 terms of the Taylor series expan-
sion for tan−1(x) in part b when x = 1/

√
3. (Include the calculator syntax you used.)

d. Find the numerical value of 6 · s20 and explain whether your answer is reasonable.

5a. Decide whether the sequence
{

(n + 1)1/n
}

is convergent or divergent. Justify your answer.
If convergent, please evaluate the limit.

b. Decide whether the series
∞∑
n=1

(n + 1)1/n is convergent or divergent. Justify your answer.

(continued on other side)



6. Let Sn =

n∑
k=0

4 (−1)k

2k + 1
=

4

1
− 4

3
+ · · ·+ (−1)n

4

2n + 1
.

a. Evaluate S150 and S151 to 2 decimal places. (Include the calculator syntax you used.)

b. Prove that the series

∞∑
k=0

4 (−1)k

2k + 1
is convergent.

c. Explain why the sum of the series in part b lies between S150 and S151.

d. Is the series in part b absolutely convergent? Justify your answer.

7. Let f(x) =
∞∑
n=0

n2 + 1

5n
(x + 2)n

a. Find the center and the radius of convergence of the power series for f(x) above.

b. Find a power series for the derivative f ′(x) with the same center as in part a. What is the
radius of convergence of the power series for f ′(x)?

8. Let Tn(x) be the Taylor polynomial of degree n with center at 0 for F (x) =
√

4− x and let
Rn(x) = F (x)− Tn(x).

a. Write a general remainder formula for Rn(x) according to Taylor’s theorem.

b. Find T2(x).

c. Find a numerical bound for |F (x)− T2(x)|, valid for all x such that 0 ≤ x ≤ 2.

d. Find the first 3 non-zero terms in the Taylor series for G(x) =
√

4− 3x3, center at 0.
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