QUEENS COLLEGE DEPARTMENT OF MATHEMATICS

Final Examination

 $2\frac{1}{2}$ Hours

Mathematics 143 Fall 2018

Instructions: Answer all the questions. Show all work.

1. Evaluate the following limits:

a)
$$\lim_{x \to 1^+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

b)
$$\lim_{x \to \infty} (e^x + x)^{1/x}$$

2. a) Evaluate the following integrals:

$$i) \qquad \int \frac{\sqrt{9-x^2}}{x^2} dx$$

ii)
$$\int_0^{\pi/2} \sin^3 x \cos^2 x \, dx$$

$$iii) \qquad \int \frac{x^2 - x + 6}{x^3 + 3x} dx$$

b) Determine whether the integral is convergent or divergent. If it is convergent, find its value.

i)
$$\int_{2}^{\infty} \frac{dx}{x \ln x}$$

ii)
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$

3. Find the sum of the series:

a)
$$\sum_{n=1}^{\infty} \frac{2^{2n+1}}{5^n}$$

b)
$$\sum_{n=1}^{\infty} [\tan^{-1}(n+1) - \tan^{-1}(n)]$$

c)
$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \cdots$$

4. a) Find a power series representation for $f(x) = \ln(1+x)$ and find its radius of convergence.

b) Show that
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) \cdot 3^n} = \frac{\pi}{2\sqrt{3}}$$
.

c) Express the indefinite integral $\int x^2 \tan^{-1} x \, dx$ as a power series. What is its radius of convergence?

Hint: For 4b) and 4c) use the following power series representation:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 for $|x| < 1$

- 5. Find the radius of convergence and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{2n+1}.$
- 6. Determine whether each of the following series is convergent or divergent. Show all details and specify which test you are using.

a)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}{n!}$$

b)
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$$

7. Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent:

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 4}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \tan^{-1} n}{n^2}$$

- 8. a) Find $T_3(x)$, the third Taylor polynomial of $f(x) = \ln(1+2x)$ at a = 1.
 - b) If $T_3(x)$ is used to approximate f(x) when $0.5 \le x \le 1.5$, how accurate is this approximation?