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Instructions:

• Read each problem carefully. Make sure you understand what the problem is
asking.

• You must show all your work. No credit will be given to a problem without work.
For incorrect solutions, partial credit will be given where appropriate.

• All your work and solutions must be recorded in the provided Blue Book. Additional
Blue Books are available if necessary.

• You are allowed to use a calculator that is in accordance with the calculator policy set
by the mathematics department. You may not share calculators during the exam.

• No notes or devices other than a writing utensil and calculator may be used during
the exam.

• Unless otherwise noted, answers must be precise, not approximate (for example, 1
3
6=

0.33).

1. For each of the following statements, decide whether it is TRUE or FALSE. (No work is
required.)

(a) L’Hôspital’s rule cannot be used to compute lim
x→1

x2 + 1

x + 2
.

(b) If f and g are continuous functions with f(x) > g(x) ≥ 0 for every x ≥ 1 and∫ ∞
1

f(x) dx diverges, then the Comparison Theorem implies

∫ ∞
1

g(x) dx diverges.

(c) Every absolutely convergent series is convergent.

(d) If lim
n→∞

an+1

an
= 1, then the Ratio Test guarantees that

∞∑
n=1

an converges.

(e) The Alternating Series Test guarantees that the alternating series
∞∑
n=1

(−1)nn con-

verges.

2. Find each of the following integrals:

(a)

∫
2x + 5

x3 − 2x2 + x
dx

(b)

∫ ∞
1

xe−3x dx

(c)

∫
dx

x2
√
x2 − 4

(d)

∫
ln(x2 + 1) dx

3. Compute the limits of the following sequences.

(a)

{
(lnn)2

n

}∞
n=1

(b) {(1 + 7
n
)n}∞n=1.
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4. Compute the sum
∞∑
n=0

32n−1

10n+1

5. Determine if each of the following series is absolutely convergent, conditionally conver-
gent, or divergent. Clearly indicate where and how any convergence/divergence tests are
used in the justification of your conclusion.

(a)
∞∑
n=1

(−1)nn4

7n

(b)
∞∑
n=1

(−1)n(n + 1)

3n2 − 2

(c)
∞∑
n=1

2n2 − 5

n2 + n + 1

6. Find the radius and interval of convergence of each of the following power series.

(a)
∞∑
n=1

3nxn

4n− 1

(b)
∞∑
n=1

(x− 1)n

n2

7. In this problem you are asked to approximate the function f(x) = ln x. In parts (b) and
(c), your answers may be in decimal form.

(a) Approximate the function f(x) = lnx by its second Taylor polynomial centered at
a = 1 (do not try to find the entire Taylor series).

(b) How accurate is this approximation when 0.8 ≤ x ≤ 1.2? (This is asking you to find
a numerical upper bound for the remainder function |R2(x)| when 0.8 ≤ x ≤ 1.2.)

(c) Using the Taylor polynomial found in part (a), approximate ln(1.1).
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