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Instructions: Answer all questions. Show all work.

1. Find the following integrals:

(a)
∫

t5√
1−t2 dt

(b)
∫ π/3

0
tan3 x · sec2 xdx

(c)
∫

x2 ln xdx

(d)
∫

5dx
(x−1)(x2+2x+2)

2. Determine whether each integral is convergent or divergent.

(a)
∫ 0

−1
x

6√1+x
dx

(b)
∫∞

1
arctanx
(x+5)3/2 dx

3. Determine whether each sequence {an} is convergent or divergent. If it converges, find
its limit.

(a) an = cosn
1+
√
n

(b) an = (−1)n · n2

n2+3

4. Determine whether each series is absolutely convergent, conditionally convergent, or
divergent.

(a)
∑∞

n=1
n+n2

cos2 n

(b)
∑∞

n=1
2

4n−n

(c)
∑∞

n=2
(−1)n

lnn

(d)
∑∞

n=1
9n

2n+1·5n·n!

(continued on the back)



5. Find the radius of convergence and interval of convergence of the series
∞∑
n=2

(x− 1)n

n3/2 · ln n
.

6. Use l’Hospital’s Rule to find the limits.

(a) limx→∞
x2

e3x+x3+1

(b) limx→0+(cot x)sinx

7. Find the Maclaurin series for f(x) = x
x2+1

and its radius of convergence.

8. Determine the least number of terms of the Maclaurin series for sin x, so that the error
in calculating sin 2 does not exceed 0.001.
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