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Instructions: Answer all questions. Show all work.

1. Evaluate each of the following integrals:

(a)

∫
ln(x)√

x
dx

(b)

∫
x3

√
x2 + 4 dx

(c)

∫
dx

(x− 1)2(x2 + 4)

2. Determine whether

∫ 0

−∞
xe2xdx converges or diverges. Evaluate it if it is convergent.

3. Find the limit, if it exists.

(a) lim
x→0

sin(5x)

tan(4x)

(b) lim
x→∞

(2x)1/3x

4. Determine if each series is absolutely convergent, conditionally convergent, or diver-
gent.

(a)
∞∑
n=1

3n− 10

2n + 3

(b)

∞∑
n=1

n4(−3)n

(n + 2)!

(c)
∞∑
n=1

√
3n

n3 + 5

(d)
∞∑
n=1

(−1)n+1 1
3
√
n

(continued on the other side)



5. Find the radius and interval of convergence of the following power series:

(a)
∞∑
n=0

(−1)n(x− 4)n

n + 1
(b)

∞∑
n=0

n!xn

3n

6. Find a power series in x for F (x) =

∫
x4ex

2
dx and state its radius of convergence.

7. Find the first three terms of the Maclaurin series for

(a)
1

1−x3 (b) e−xsin(x)

8. Let f(x) = 3
2+x .

(a) Find the second Taylor polynomial of f about a = 1.

(b) Approximate f(1.3) using the Taylor polynomial in part (a).

(c) Suppose that x is in the interval (0, 2). First obtain a general expression for the
error term R2(x), with a = 1. Then find a bound for this error, where x is in the
interval (0, 2).
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