QUEENS COLLEGE DEPARTMENT OF MATHEMATICS

FINAL EXAMINATION $2\frac{1}{2}$ Hours

MATHEMATICS 151
INSTRUCTIONS: SHOW ALL WORK IN YOUR BLUE BOOK FOR ALL QUESTIONS.
FALL 2018

1. Use analytical methods (not your calculator) to find each of the following limits. If the limit is $+\infty$, $-\infty$ or does not exist, explain why.

a)
$$\lim_{x \to 6} \frac{6 - x}{x^2 - 2x - 24}$$

b)
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3}$$

c)
$$\lim_{\theta \to 0} \frac{\tan(6\theta)}{4\theta + 5\sin\theta}$$

$$\lim_{x \to \infty} \frac{x+3}{\sqrt{16x^2+1}}$$

e)
$$\lim_{x \to 3^{-}} \frac{x^2 - x - 6}{|x - 3|}$$

2. Let $f(x) = \frac{3x}{x+5}$. Using the definition of the derivative, find f'(x).

3. In each of the following find $\frac{dy}{dx}$: (algebraic simplification is not necessary)

a)
$$y = (x^5 - 2x^2 + 6)^4 (3x^3 + 5x^2 + 9x)^6$$

b)
$$y = \frac{\sec 4\theta}{1 + \tan 6\theta}$$

c)
$$y = \cos(\tan(\sqrt{\sin 5x}))$$

d)
$$\cos(x+y) = y^4 \sin x$$

e)
$$y = \int_{\chi^2}^{3} \sqrt{1 + \sin t^3} \, dt$$

4. Draw a graph of a single function f having <u>all</u> of the following properties.

i)
$$f'(x) > 0$$
 if $0 < x < 1$ or $1 < x < 2$
 $f'(x) < 0$ if $x < 0$ or $x > 2$

ii)
$$f''(x) > 0$$
 if $x < 1$ or $x > 5$
 $f''(x) < 0$ if $1 < x < 5$

iii)
$$\lim_{x \to 1^{-}} f(x) = \infty \qquad \lim_{x \to 1^{+}} f(x) = -\infty$$

iv)
$$\lim_{x \to \infty} f(x) = 1$$
, $f(0) = 0$, $f(2) = 4$, $f(5) = 3$

- 5. At a certain instant, car A is 120 miles north of car B. Car A is traveling south at a rate of 40 mi/hr while car B is traveling east at 60 mi/hr. How fast is the distance between them changing two hours later?
- 6. A particle moves along a line so that its velocity at time t is $v(t) = t^2 2t 15$ (measured in meters per second.)
 - a) Find the displacement of the particle during the time period $1 \le t \le 7$.
 - b) Find the distance traveled during this time period.
- 7. Let $f(x) = \frac{2x}{x^2 4}$.
 - a) For which intervals is f increasing and for which is f decreasing?
 - b) Find all the local maxima and/or local minima of f.
 - c) Find any and all vertical or horizontal asymptotes of f.
 - d) For which intervals is f concave up and for which is f is concave down?
 - e) At what *x* values, if any, does *f* have inflection points?
 - f) Sketch the graph of y = f(x) using the information found in parts a) e).
- 8. A box with a square base and a closed top has a volume of 3,000 cubic feet. The top costs \$4 per square foot, the bottom costs \$ 8 per square foot and the sides cost \$ 2 per square foot. Use calculus to find the dimensions of the box that will minimize its total cost of construction.
- 9. Find each of the following integrals:

a)
$$\int (u+3)(u+2)\,du$$

b)
$$\int \sec^6 x \tan x \, dx$$

c)
$$\int x(3x+2)^6 dx$$

10. Evaluate $\int_0^3 (x^2 + 2x) dx$ as the limit of a Riemann sum.

Note:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$