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Instructions: Show all work.
1. In each of the following, find f'(x), writing your answer in simplest form. State the domains of f(x)
and f'(x).
a) f(x) = log,(arctan x)
b) f(x) =In(Inx?)
<) flx) = 2=
1
d) f(x) =sint =
X
2. Without using your calculator, find the following limits. Give explanations for your answers.
a) lim tan~!(lnx~?)
xX— —00
x%+4
) 2
lim 3
x— 37
sin x
) lim —
x>0 sin7x
d) lim e " {1+ x2
X— 0
3. Find each of the following indefinite integrals:
a) f tan® x dx
b) f sin® x sin 2x dx
9) f e 3% sin 3x dx
d
d) =
x?Vx? - 16
4. Without using your calculator, evaluate the given definite integrals. If an improper integral is
divergent, state this as your answer.
f Lodx
a) —_—
o (x2+1)2
Znx
9 X
1
9) f Vx Inx dx
0
d) J- xe *dx
0
5. a) Set up, but do not evaluate, a definite integral that can be used to compute the arc length of
f(x) =tan"!xwhen1 < x < 3.
b) Estimate the above integral using the Trapezoidal Rule withn = 6.

(continued on the back)



6. Find all real numbers c such that the area under the graph of f(x) = 1+1 and above the interval

x€

[1, 00) on the x-axis is infinite. (Hint: Use the Comparison Test.)

7. a) Find the volume of the solid of revolution obtained by rotating the region bounded by the
curvesy = x> and y = x? around theliney = —1

b) Find the volume of the solid of revolution obtained by rotating the region bounded by y =
(x —3)? and y = 4 around the line x = 1.

8. Decide whether each of the following series converges absolutely, converges conditionally or diverges.
Clearly specify the criteria that you are using.

a) z n¢
n=1
b Y (e
n=1
C 1
c) z _—
nln(n? + 1)
n:
® 3 7 3n
O )
n—3
n:
9. Find the interval and radius of convergence of the power series

_ )
Z( 1)"("34,1)

10. a) Find T,(x), the second Maclaurin polynomial of f(x) = e *".

b) Compute T,(0.1) and use Taylor’s Theorem to find the largest possible error that can result
when T,(0.1) is used to estimate f(0.1).

11.  *(extra credit) Prove thatif llm a, = 0 and a sequence {b, } is bounded, then lim a,b, = 0.

n— oo
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