Queens College Department of Mathematics

Final Examination $2\frac{1}{2}$ Hours

Mathematics 152 Instructions: Show all work.

Fall 2017

- In each of the following, find f'(x), writing your answer in simplest form. State the domains of f(x)1. and f'(x).
 - a) $f(x) = \log_2(\arctan x)$
 - b) $f(x) = \ln(\ln x^2)$
 - $f(x) = 2^{\ln x}$ c)
 - $f(x) = \sin^{-1}\frac{1}{x}$ d)
- 2. Without using your calculator, find the following limits. Give explanations for your answers.
 - $\lim_{x \to -\infty} \tan^{-1}(\ln x^{-2})$ a)
 - $\lim_{x \to 3^{-}} \frac{\left(\frac{x^2+4}{x-3}\right)}{3}$ b)
 - $\lim_{x \to 0} \frac{\sin \pi x}{\sin 7x}$ c)
 - $\lim_{x \to \infty} e^{-x^2} \sqrt[3]{1 + x^2}$ d)
- 3. Find each of the following indefinite integrals:
 - $\int \tan^6 x \, dx$
 - $\int \sin^3 x \sin 2x \, dx$
 - c) $\int e^{-3x} \sin 3x \, dx$
 - $\int \frac{dx}{x^2 \sqrt{x^2 16}}$ d)
- Without using your calculator, evaluate the given definite integrals. If an improper integral is 4. divergent, state this as your answer.

 - b)
 - $\int_0^1 \sqrt{x} \ln x \, dx$ $\int_0^\infty x e^{-x} \, dx$ c)
 - d)
- Set up, but do not evaluate, a definite integral that can be used to compute the arc length of 5. $f(x) = \tan^{-1} x \text{ when } 1 \le x \le 3.$
 - b) Estimate the above integral using the Trapezoidal Rule with n = 6.

- 6. Find **all** real numbers c such that the area under the graph of $f(x) = \frac{1}{1+x^c}$ and above the interval $[1, \infty)$ on the x-axis is infinite. (Hint: Use the Comparison Test.)
- 7. a) Find the volume of the solid of revolution obtained by rotating the region bounded by the curves $y = x^3$ and $y = x^2$ around the line y = -1
 - b) Find the volume of the solid of revolution obtained by rotating the region bounded by $y = (x 3)^2$ and y = 4 around the line x = 1.
- 8. Decide whether each of the following series converges absolutely, converges conditionally or diverges. Clearly specify the criteria that you are using.

a)
$$\sum_{n=1}^{\infty} n^{-e}$$

b)
$$\sum_{n=1}^{\infty} (-e)^n$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n^2 + 1)}$$

$$d) \qquad \sum_{n=1}^{\infty} \left(\frac{3n+7}{7n-3}\right)^{3n}$$

9. Find the interval and radius of convergence of the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n^3 4^n}$$

- 10. a) Find $T_2(x)$, the second Maclaurin polynomial of $f(x) = e^{-x^2}$.
 - b) Compute $T_2(0.1)$ and use Taylor's Theorem to find the largest possible error that can result when $T_2(0.1)$ is used to estimate f(0.1).
- 11. *(extra credit) Prove that if $\lim_{n\to\infty} a_n = 0$ and a sequence $\{b_n\}$ is bounded, then $\lim_{n\to\infty} a_n b_n = 0$.