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Instructions: Answer all questions. Show all work. 

 

1. Differentiate each of the following functions: (algebraic simplification is unnecessary) 

 

a. 𝑦 = tan−1(6𝑥 + 1)  + ln(sec 𝑥) 
 

b. 𝑦 = 𝑥9 cos 𝑥 
 

c. 𝑓(𝑡) = 𝑒𝑡 sin(2𝑡) − 3 sin−1(√𝑡) 

 

  

 

2.  

a. Evaluate each of the following indefinite integrals: 

i.  ∫
3𝑥2 + 𝑥

(𝑥 − 1)(𝑥 + 1)2
𝑑𝑥 

ii.  ∫ 𝑥 ∙ 7𝑥 𝑑𝑥 

 

b. Without using your calculator, find the exact value of each of the following definite integrals. 

i.  ∫
1

1 + 25𝑥2

√3
5

0

𝑑𝑥 

ii.  ∫ 2𝑥3√1 − 𝑥2
1

0

𝑑𝑥 

 

 

3. Determine whether the integral below is convergent or divergent. If it is convergent, find its value. 

 

∫
𝑒−√𝑥

√𝑥

∞

1

𝑑𝑥 

 

 

 

4. Find the solution of the differential equation below that satisfies the given initial condition. 

 

𝑑𝑦

𝑑𝑡
=

2𝑡 + 𝑠𝑒𝑐2(𝑡)

2𝑦
,   𝑦(0) = −6 

 

 

 

5. Let R be the region in the plane bounded by the graphs of 𝑦 = 𝑥2 + 2𝑥 and 𝑦 = 2 + 𝑥. 

 

a. Find the area of 𝑅. 

 

b. Find the volume of the solid of revolution generated by revolving 𝑅 around the line 𝑦 = 3. 

 

c. Set up, but do not evaluate, an expression that computes the perimeter of 𝑅. 
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6. Discuss the convergence or divergence of each of the following series. Explain each of your 

answers, stating the names of the tests you are using. 

a.  ∑
1

√𝑛 + 4

∞

𝑛=1

 

b.  ∑
𝑛2

6𝑛4 − 5

∞

𝑛=1

 

c.  ∑
(−17)𝑛

𝑛!

∞

𝑛=1

 

d.  ∑ (
2𝑛 + 1

3𝑛 + 1
)

𝑛∞

𝑛=1

 

 

 

7. Find the radius of convergence and interval of convergence of the power series below. 

 

∑
(𝑥 + 1)𝑛

√𝑛 ∙ 4𝑛

∞

𝑛=1

 

 

 

 

8. Compute each of the following limits: 

a.  lim
𝑥→2

  
sin (𝜋𝑥)

ln (𝑥 − 1)
 

b.  lim
𝑥→−∞

(1 +
1

2𝑥
)

3𝑥

 

 

 

 

9. a.         Starting with the Maclaurin series for 𝑒𝑥, write the Maclaurin series for 𝑒−𝑥2
. 

 

b.         Using the first four terms of the series found in part (a), obtain an estimate for ∫ 𝑒−𝑥21

0
𝑑𝑥. 

 

 

 

 

 

 

10.       a.         Find 𝑇3(𝑥), the third Taylor polynomial of 𝑓(𝑥) = √𝑥 centered at 𝑎 = 1. 

 

b.         If 𝑇3(𝑥) is used to estimate 𝑓(𝑥) for 𝑥 ∈ [. 9, 1.1], use |𝑅3(𝑥)| to find the largest possible 

error that can result. 


