QUEENS COLLEGE DEPARTMENT OF MATHEMATICS FINAL EXAM 2 ¹⁄₂ hours

MATH 152

FALL 2019

Show all work. Unless otherwise specified, all integrals must be evaluated using calculus (i.e. not your calculator).

1. (a) Compute the numerical value of $e^{2\ln 3}$.

(b) Find an equation of the line tangent to $y = \frac{(x^3 + 2)\sqrt{x^2 + 1}}{(2x+1)^3}$ at the point where x = 0.

- (c) If $f(x) = \ln(2x+3)$ find $f^{-1}(0)$ and $(f^{-1})'(0)$.
- 2. Evaluate each of the following limits:

(a)
$$\lim_{x \to 0} \frac{xe^x - \sin x}{\sin(x^2)}$$
 (b) $\lim_{x \to 0} (1 + x \ln 2)^{\frac{1}{x}}$

- 3. Let R be the region in the first quadrant bounded by $y = \cos x$, $y = \sin x$ and the y-axis.
 - (a) Compute the area of R.
 - (b) If S is the solid of revolution obtained by rotating R about the *x*-axis, compute the volume of S.

- (c) If T is the solid of revolution obtained by rotating R about the *y*-axis, compute the volume of T.
- 4. Let *L* be the length of arc of the curve $y = \sin x$, $0 \le x \le \pi$. Use your calculator to approximate *L* to 4 decimal places.
- 5. Evaluate using techniques of integration. Calculator approximations will not be accepted.:

(a)
$$\int_0^\infty x^2 e^{-x^3} dx$$
 (b) $\int \frac{3x^2 + x + 1}{x^3 + x} dx$ (c) $\int_0^1 x^3 \sqrt{1 - x^2} dx$

6. Use an appropriate test to determine if the series converges or diverges. Show all details *clearly* indicating which test you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}$$
 (b) $\sum_{n=0}^{\infty} \frac{2^n}{3^n+4^n}$ (c) $\frac{1}{e} + \frac{2}{e^2} + \frac{3}{e^3} + \frac{4}{e^4} + \dots$

(continued on the other side)

7. Determine if each of the following series converges absolutely, converges conditionally or diverges. Show all details, *clearly* indicating which tests you are using.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{2^n}$$
 (b) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots$

8. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)3^n} x^{n+1} = x + \frac{x^2}{6} + \frac{x^3}{27} + \frac{x^4}{108} + \dots$$

(a) Find the interval of convergence of this series. (Be sure to check the endpoints.)

(b) Find the function which represents f'(x) within its interval of convergence.

- 9. (a) Find the Maclaurin series representing $f(x) = x^3 \sin(x^2)$.
 - (b) Use the result of (a) and the alternating series approximation theorem to approximate $\int_{0}^{1} f(x) dx$ with 4 decimal place accuracy.