
Queens College
Department of Mathematics

Final Examination
2.5 Hours

Mathematics 152 Spring 2016
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1. Find the volume of the solid of revolution formed by revolving the region between the curve
y =
√
x exp(−x) and the x-axis about the x-axis for x in the interval (1,∞).

2. Show that, for all x, −1 < x < 1,
d arccosx

dx
= − 1√

1− x2
.

3. Calculate the following integrals:∫
exp(x) sin(x)dx (use integration by parts)(a)

1∫
−1

x exp(x2)dx(b)

+∞∫
−∞

1

1 + x2
dx(c)

4. Write the partial fraction decomposition of

x + 1

(x2 + 1)3
.

5. Calculate the length of the curve given by the equation y2 = x3 between the points (0,0) and (1,1).

6. Find a differentiable function y(x) defined on (0,+∞) such that

dy

dx
=

y

2x
and y(4) = 6.

7. Calculate

lim
n→+∞

n!

nn
.

8. Show that the series
+∞∑
n=1

1

n152

converges using the integral test.

9. Determine the radius of convergence of the power series
+∞∑
n=2

xn

(n− 1)!
.

10. Find a power series representation of ln(x + 1).

11. Find the Maclaurin series (Taylor series about x = 0) of x1776 + x7 + x4.

12. Show that if the series
+∞∑
n=1

an is convergent, then lim
n→+∞

an = 0.

13. For all x > 0, define

L(x) =

x∫
1

1

t
dt.

Show that, for all x, y > 0,

(a) L(xy) = L(x) + L(y).

Hint: for each y > 0, consider the function f(x) = L(xy) (where x > 0), calculate the derivatives df
dx

and dL
dx

, compare the results, consider formula (a) substituting x = 1, and make the conclusion.
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