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Instructions: Answer all questions. Show all work.  

 

 

1. Let                         . 

 

(a) Find 𝑓′(𝑥). 

 

(b) Evaluate lim
𝑥→∞

𝑓(𝑥). 

 

(c) Show that 𝑓(𝑥) has an inverse for 𝑥 on [𝑒−0.1, 𝑒0.1] and find (𝑓 −1)′(1). 

 

 

 

 

2. Let R be the region bounded by two curves  𝑦 = 5𝑥 and  𝑦 = 5√𝑥 .  
 

(a) Find the area of R. 

 

(b) Find the perimeter of R. 

 

(c) Find the volume of the solid of revolution obtained by rotating R around 𝑦-axis. 

 

(d) Find the volume of the solid of revolution obtained by rotating R around 𝑦 = −1. 

 

 

 

 

3. Differentiate the following functions: 

 

(a) 𝑓(𝑥) = (tan−1(25𝑥))2   

 

 

(b)                              (use logarithmic differentiation)   

 

 

 

 

4. Evaluate each using techniques of integration: 

(a)  ∫
1

5 − 4𝑥
𝑑𝑥

0

−∞

 

(b)  ∫ 3𝑥𝑒3𝑥𝑑𝑥 

(c)  ∫
𝑥3

√𝑥2 + 49
𝑑𝑥 

(d)  ∫
𝑥 − 6

𝑥2 − 6𝑥 + 8
𝑑𝑥

1

0

 

 

 

 

 

 

𝑓(𝑥) = 𝑒

ln(𝑥)
𝑥2+1

 

𝑓(𝑥) =  
𝑒√3𝑥2+1

√sin 𝑥
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5. For the sequence 𝑎𝑛 =
ln (𝑛)

𝑛
  

 

(a) Find lim
𝑛→∞

𝑎𝑛 (If it does not exist, write DNE, and explain why.) 

 

(b) Does               converge? Explain. 

 

 

 

 

6. Determine whether the series is absolutely convergent, conditionally convergent, or 

divergent. Justify your conclusions. 

 

(a)  ∑
(−1)𝑛

𝑛

∞

𝑛=1

 

(b)  ∑
𝑛

5𝑛 + 1

∞

𝑛=1

 

(c)  ∑ (
3

4
)

𝑛∞

𝑛=1

 

(d)  ∑
𝑛

2𝑛2 + 1

∞

𝑛=1

 

 

 

 

 

7. Find the radius of convergence, R, and the interval of convergence of the series 

∑
(𝑥 − 3)𝑛

8𝑛 ∙ 𝑛4

∞

𝑛=1

 . 

 

 

 

 

8. Find the power series representation for the function                                   about 𝑥 = 0. 
 

 

 

 

9. (a)       Using the Maclaurin series for cos 𝑥, find the Maclaurin series for 𝑓(𝑥) = cos(𝑥2). 

 

(b) Using the result of part (a), approximate the definite integral                            with 

four decimal place accuracy. 

 

 

 

∑ 𝑎𝑛

∞

𝑛=1

 

 

∫ cos(𝑥2) 𝑑𝑥
1

0

 

𝑓(𝑥) =
ln(1 + 𝑥)

𝑥
 


