QUEENS COLLEGE

Department of Mathematics
Final Examination
$2 \frac{1}{2}$ Hours

Instructions:

Answer all questions.

Show all work.

1. Using algebraic methods, find each of the following limits. If a limit is $\infty,-\infty$, or does not exist, state this as your answer.
a) $\lim _{x \rightarrow 2^{-}} \frac{2-x}{x^{2}-4}$
b) $\lim _{x \rightarrow-1} \frac{|x|-1}{1+x}$
c) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+4 x^{2}+5}{1+7 x^{3}}$
d) $\lim _{u \rightarrow 0} \frac{u^{2}}{u+1}$
e) $\lim _{x \rightarrow-1} \frac{3 x^{2}-5}{1+x}$
2. a) State the definition that a function $f(x)$ is continuous at $x=a$.
b) Let

$$
f(x)= \begin{cases}b x^{2}+1, & x \leq 2 \\ \frac{1}{x+1}, & x>2\end{cases}
$$

Find the value(s) of b for which $f(x)$ is continuous on \mathbb{R}.
3. a) State the definition of $f^{\prime}(-1)$, the derivative of a function $f(x)$, at $x=-1$.
b) Using only this definition, compute $f^{\prime}(-1)$ for $f(x)=\frac{1}{x}$.
4. Find $\frac{d y}{d x}$ for each of the following.
a) $y=\frac{2 x+3}{x^{1 / 2}+1}$
b) $y=2 e^{-x}+\frac{4}{\sqrt{x}}+x^{2} \cdot \ln (2 x)$
c) $x y^{2}+\ln 3 x=e^{y}+2$
5. The weekly demand for a certain product is

$$
p(x)=400-0.03 x, \quad 0 \leq x \leq 10,000
$$

where $p(x)$ denotes the wholesale price in dollars and x denotes the quantity demanded. The weekly total cost function associated with manufacturing the product is given by

$$
C(x)=0.0001 x^{3}-0.02 x^{2}+100 x+5000
$$

where $C(x)$ denotes the total cost incurred in producing x units.
a) Find the revenue and the profit functions.
b) Find the marginal cost, the marginal revenue, and the marginal profit functions.
c) Use marginal analysis to estimate the actual profit/loss realized from the sale of the 1001st unit.
d) How many units, to the nearest integer, must be sold to maximize revenue?
6. Let $f(x)=\frac{1}{3} x^{3}+2 x^{2}-5 x+3$.
a) Find the intervals of increase or decrease of f.
b) Find the local maximum and minimum values of f.
c) Find the inflection points of f and the intervals where f is concave up or concave down.
7. How much money should be deposited in a bank paying interest at the rate of 2% compounded daily (assume a 365 -day year) so that at the end of 10 years the accumulated amount will be $\$ 15,000$?
8. A certain radioactive element decays according to the law

$$
Q(t)=Q_{0} e^{-t / 100}
$$

where Q_{0} is the initial size of the sample and t is the time measured in days. If the size of the sample left after 250 days is 15 mg , what was the initial size of the sample?
9. A cylindrical tank with radius of 3 feet and height of 12 feet is being filled with water at the rate of 2 cubic feet per minute. How fast is the water level rising when its height is 10 feet? (Hint: the volume V of a cylinder with height h and radius r is $V=\pi r^{2} h$.)

