QUEENS COLLEGE DEPARTMENT OF MATHEMATICS FINAL EXAMINATION $2\frac{1}{2}$ HOURS

Mathematics 143 Fall 2022

Instructions: Answer all questions. Show all work.

1) Evaluate:

a)
$$\int x^2 \sin x \, dx$$

b)
$$\int \cos^4 x \, dx$$

c)
$$\int \sec^4 x \tan^2 x \, dx$$

d)
$$\int x^5 (1 - x^2)^{1/2} \, dx$$

e)
$$\int_0^2 \frac{x^3}{(4+x^2)^{1/2}} dx$$

f)
$$\int \frac{3x^2 - 4x + 6}{(x - 2)(x^2 + 1)} dx$$

g)
$$\lim_{x \to \infty} \left[1 + \frac{1}{x^2} \right]^x$$

- 2) Determine whether the improper integral $\int_0^\infty xe^{-3x}\,dx$ converges or diverges. If it is convergent, find its value.
- 3) Determine whether the following series converge or diverge:

a)
$$\sum_{n=1}^{\infty} \frac{2n}{n^3 - 4}$$

b)
$$\sum_{n=1}^{\infty} \frac{1 + \sin(2n)}{n^2 + 1}$$

4) Find the radius and the interval of convergence for each of the following:

a)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 3^n}$$

$$b) \qquad \sum_{n=1}^{\infty} \frac{n^2 x^n}{1+2n}$$

- Using the definition alone, find the Maclaurin series for $f(x) = \ln(1 2x)$ and determine its interval of convergence.
- 6) Compute $\int_0^1 \frac{\cos x 1}{x^2} dx$ with an error of at most 0.001.
- 7) Let $f(x) = x^{1/3}$, and a = 8.
 - a) Compute $T_2(x)$, the second Taylor polynomial of f about 8.
 - b) What is the largest that $|f(x) T_2(x)|$ can be if $7 \le x \le 9$?