QUEENS COLLEGE
 Department of Mathematics
 Final Examination
 $2 \frac{1}{2}$ Hours

Instructions: Answer all questions. Show all work.

1. Compute the following integrals:
(a) $\int_{0}^{1} \sqrt{1-x^{2}} d x$
(b) $\int \sin ^{3} x \cos ^{4} x d x$
(c) $\int_{1}^{3} x e^{2 x} d x$
(d) $\int \frac{x+1}{x^{2}\left(x^{2}+1\right)} d x$
2. Determine if the following improper integral converges, or diverges:

$$
\int_{-4}^{0} \frac{1}{\sqrt{x+4}} d x
$$

If it converges, find its exact value.
3. Compute the following limits:
(a) $\lim _{x \rightarrow \infty} x^{2} e^{-x^{3}}$
(b) $\lim _{x \rightarrow 0^{+}}(1+x)^{\cot x}$
4. Determine whether each series is absolutely convergent, conditionally convergent, or divergent:
(a) $\sum_{n=1}^{\infty} 2\left(3^{-n}\right)$
(b) $\sum_{n=0}^{\infty} \frac{2 n+4}{n+7}$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{2 n+1}$
(d) $\sum_{n=1}^{\infty} \frac{7 n}{n^{5 / 2}}$
5. Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{4^{n} n} x^{n}
$$

6. Starting with the Maclaurin series for $\frac{1}{1-x}$, find the Maclaurin series for the function

$$
f(x)=1 /\left(1-125 x^{3}\right) .
$$

What is its radius of convergence?
7. Use term-by-term integration of power series to obtain a numerical approximation to $\int_{0}^{1} e^{-x^{3}} d x$ with an error of less than $.0001=10^{-4}$. Justify your answer.
8. Let $f(x)=\sqrt[4]{x}$, for $x \geq 0$.
(a) Write the third Taylor polynomial, $T_{3}(x)$, for $f(x)$ centered at $a=16$.
(b) Using Taylor's Formula, write the expression for the general remainder $R_{3}(x)=f(x)-T_{3}(x)$, for any x in the interval [12,20], and some number z in this interval.
(c) Determine if the approximation $\sqrt[4]{x} \approx T_{3}(x)$ has error less than 10^{-3}, for all x in the interval $[12,20]$. To do so, give an explicit numerical upper bound for $\left|R_{3}(x)\right|$ for such values of x.

