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Instructions: Answer all questions. Show all work.

1. Compute the following integrals:
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2. Determine if the following improper integral converges, or diverges:
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If it converges, find its exact value.

3. Compute the following limits:
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4. Determine whether each series is absolutely convergent, conditionally convergent, or diver-
gent:

(a) > 2037

(b) 22n+4

5. Find the radius of convergence and interval of convergence of the power series
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(continued on the back)



6. Starting with the Maclaurin series for T , find the Maclaurin series for the function

f(z) =1/(1 —1252°).

What is its radius of convergence?

1
7. Use term-by-term integration of power series to obtain a numerical approximation to / e dr
0

with an error of less than .0001 = 10~%. Justify your answer.

8. Let f(x) = ¢/, for z > 0.
(a) Write the third Taylor polynomial, T5(z), for f(x) centered at a = 16.

(b) Using Taylor’s Formula, write the expression for the general remainder
Rs(z) = f(z) — T3(x), for any z in the interval [12,20], and some number z in this
interval.

(c) Determine if the approximation /z =~ T3(z) has error less than 1073, for all x in the
interval [12,20]. To do so, give an explicit numerical upper bound for |R3(x)| for such
values of z.
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