Department of Mathematics

Math 152 Final Exam, Spring 2023

- The exam has two parts.
- You have 150 minutes to answer the questions.
- Show all work in your exam book.

Part I [30 points]. Write the letter of the correct answer in your exam book. Show your work.

1. If $f(x)=e^{5 x}+x$ and f^{-1} denotes the inverse of f, the derivative $\left(f^{-1}\right)^{\prime}(1)$ is
(A) $5 e^{5}+1$
(B) $\frac{1}{5 e^{5}+1}$
(C) 6
(D) $\frac{1}{6}$
2. A cup of boiling water is left in a $70^{\circ} \mathrm{F}$ room. Which of the following formulas could describe the temperature T of the water after t hours?
(A) $T=212 e^{-4 t}+70$
(B) $T=142 e^{-4 t}+70$
(C) $T=70 e^{-4 t}+212$
(D) $T=70 e^{-4 t}+142$
3. $\lim _{x \rightarrow 0} \frac{\tan ^{-1}(3 x)-3 x}{x^{3}}$ is
(A) -1
(B) -3
(C) -9
(D) $-\infty$
4. I set up an integral for the arc length of $y=\cos x$ between $x=0$ and $x=\pi / 4$. My calculator estimates this integral to be
(A) 0.8793
(B) 0.8671
(C) 0.8520
(D) 0.8443
5. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n}(x-1)^{n}$ is
(A) $\left(\frac{1}{2}, \frac{3}{2}\right)$
(B) $\left[\frac{1}{2}, \frac{3}{2}\right]$
(C) $\left[\frac{1}{2}, \frac{3}{2}\right)$
(D) $\left(\frac{1}{2}, \frac{3}{2}\right]$
6. Ignoring the constant of integration, the power series of $\int \frac{1}{1+x^{5}} d x$ centered at 0 has the form
(A) $x-\frac{x^{6}}{6}+\frac{x^{11}}{11}-\frac{x^{16}}{16}+\cdots$
(B) $x+\frac{x^{6}}{6}-\frac{x^{11}}{11}+\frac{x^{16}}{16}-\cdots$
(C) $x-\frac{x^{5}}{5}+\frac{x^{10}}{10}-\frac{x^{15}}{15}+\cdots$
(D) $x+\frac{x^{5}}{5}-\frac{x^{10}}{10}+\frac{x^{15}}{15}-\cdots$

Problem 1. [12 points] In each case, find the derivative $y^{\prime}=\frac{d y}{d x}$:
(a) $y=\ln \left(x+\tan ^{-1} x\right)$
(b) $y=\sin ^{-1}\left(e^{2 x}\right)$
(c) $y=(1+x)^{\cos x}$ (Hint: Use logarithmic differentiation)

Problem 2. [15 points] Evaluate the following integrals:
(a) $\int \sqrt{x} \ln x d x$
(b) $\int \frac{2 x+3}{x^{2}-9} d x$
(c) $\int_{1}^{\infty} x^{2} e^{-x^{3}} d x$

Problem 3. [10 points] Let R be the region in the plane bounded by the curve $y=e^{-x}$ and the lines $y=-x+1$ and $x=1$.
(a) Sketch R and find its area.
(b) Find the volume of the solid obtained by rotating R around the x-axis.

Problem 4. [8 points] Find the explicit form of the solution of the differential equation

$$
\frac{d y}{d x}=\left(1+\sec ^{2} x\right) y^{2 / 3}
$$

which satisfies the condition $y(\pi)=0$.
Problem 5. [15 points] Using appropriate tests, determine the convergence or divergence of each of the following series:
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2 n+1}$
(b) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n^{n}}{2^{n} n!}$

Problem 6. [10 points]
(a) Using your knowledge of the Maclaurin series of the cosine function, find the Maclaurin series of $f(x)=x \cos \left(x^{3}\right)$.
(b) Use your answer to (a) to write the definite integral

$$
I=\int_{0}^{1} x \cos \left(x^{3}\right) d x
$$

as an alternating series. Then estimate the value of I with an error of less than 0.0001.

