QUEENS COLLEGE
 Department of Mathematics
 Final Examination
 $2 \frac{1}{2}$ Hours

Instructions: Show your work. Phones should be away.

1. Compute:
(a) $\int(\ln x)^{2} d x$
(b) $\int \tan ^{4}(2 x) d x$
(c) $\int \sqrt{36-x^{2}} d x$
(d) $\int \frac{x^{3}}{x^{2}+2} d x$
(e) $\int \frac{3 x^{2}-4 x+2}{x(x-1)^{2}} d x$
2. Find the exact value of the following limit:

$$
\lim _{x \rightarrow 0^{+}}\left(2-e^{3 x}\right)^{1 / x}
$$

3. Determine, without the use of a calculator, whether or not each of the following sequences converges or diverges. If a sequence converges, find what it converges to. If a sequence diverges, state that. Justify your answer in each case.
(a) $\left\{\frac{m(2 m)!}{(2 m+1)!}\right\}$
(b) $\left\{\frac{(-1)^{n} \sin 3 n}{\sqrt{n}}\right\}$
4. Determine if each of the following series converges or diverges. Justify your answer in each case.
(a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$
(b) $\sum_{n=1}^{\infty} 2^{(1 / n)}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!n!}{(2 n)!}$
(d) $\sum_{n=1}^{\infty} \frac{\sin 4 n}{n^{4}}$
5. Find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n 2^{n}}
$$

6. Determine if the following integrals converge or diverge
(a) $\int_{1}^{\infty} \frac{e^{-x}}{1+e^{-x}} d x$
(b) $\int_{-1}^{1} \frac{1}{x^{2}} d x$
7. Using the Maclaurin series for $\sin x$, compute the Maclaurin series for $f(x)=x^{3} \sin 2 x$. Write your answer in summation notation.
8. (a) Compute the third Taylor polynomial, $T_{3}(x)$, for $f(x)=\sqrt{x}$ near $a=1$.
(b) If you use your answer in part (a) to estimate $f(x)$ on the interval $[1,1.2]$, estimate the maximum error that can result.
