QUEENS COLLEGE Department of Mathematics Final Examination $2\frac{1}{2}$ Hours

Mathematics 143

Instructions: Show your work. Phones should be away.

1. Compute:

(a)
$$\int (\ln x)^2 dx$$

(b)
$$\int \tan^4(2x) dx$$

(c)
$$\int \sqrt{36 - x^2} dx$$

(d)
$$\int \frac{x^3}{x^2 + 2} dx$$

(e)
$$\int \frac{3x^2 - 4x + 2}{x(x - 1)^2} dx$$

2. Find the exact value of the following limit:

$$\lim_{x \to 0^+} (2 - e^{3x})^{1/x}$$

3. Determine, without the use of a calculator, whether or not each of the following sequences converges or diverges. If a sequence converges, find what it converges to. If a sequence diverges, state that. Justify your answer in each case.

(a)
$$\left\{ \frac{m(2m)!}{(2m+1)!} \right\}$$

(b) $\left\{ \frac{(-1)^n \sin 3n}{\sqrt{n}} \right\}$

4. Determine if each of the following series converges or diverges. Justify your answer in each case.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

(b) $\sum_{n=1}^{\infty} 2^{(1/n)}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^n n! n!}{(2n)!}$
(d) $\sum_{n=1}^{\infty} \frac{\sin 4n}{n^4}$

5. Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n2^n}.$$

(continued on the back)

Fall 2023

6. Determine if the following integrals converge or diverge

(a)
$$\int_{1}^{\infty} \frac{e^{-x}}{1+e^{-x}} dx$$

(b) $\int_{-1}^{1} \frac{1}{x^2} dx$

- 7. Using the Maclaurin series for $\sin x$, compute the Maclaurin series for $f(x) = x^3 \sin 2x$. Write your answer in summation notation.
- 8. (a) Compute the third Taylor polynomial, $T_3(x)$, for $f(x) = \sqrt{x}$ near a = 1.
 - (b) If you use your answer in part (a) to estimate f(x) on the interval [1, 1.2], estimate the maximum error that can result.