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Instructions: Show your work. Phones should be away.

1. Compute:

(a)

∫
(lnx)2 dx

(b)

∫
tan4(2x) dx

(c)

∫ √
36− x2 dx

(d)

∫
x3

x2 + 2
dx

(e)

∫
3x2 − 4x + 2

x(x− 1)2
dx

2. Find the exact value of the following limit:

lim
x→0+

(2− e3x)1/x

3. Determine, without the use of a calculator, whether or not each of the following sequences
converges or diverges. If a sequence converges, find what it converges to. If a sequence
diverges, state that. Justify your answer in each case.

(a)

{
m(2m)!

(2m + 1)!

}
(b)

{
(−1)n sin 3n√

n

}

4. Determine if each of the following series converges or diverges. Justify your answer in each
case.

(a)
∞∑
n=2

1

n(lnn)3

(b)

∞∑
n=1

2(1/n)

(c)
∞∑
n=1

(−1)nn!n!

(2n)!

(d)

∞∑
n=1

sin 4n

n4

5. Find the radius of convergence of the power series

∞∑
n=1

(x + 1)n

n2n
.

(continued on the back)



6. Determine if the following integrals converge or diverge

(a)

∫ ∞
1

e−x

1 + e−x
dx

(b)

∫ 1

−1

1

x2
dx

7. Using the Maclaurin series for sinx, compute the Maclaurin series for f(x) = x3 sin 2x. Write
your answer in summation notation.

8. (a) Compute the third Taylor polynomial, T3(x), for f(x) =
√
x near a = 1.

(b) If you use your answer in part (a) to estimate f(x) on the interval [1, 1.2], estimate the
maximum error that can result.
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