QUEENS COLLEGE

Department of Mathematics
Final Examination
$2 \frac{1}{2}$ Hours

Instructions: Answer each question. Show your work and justify your answers. Partial credit will be awarded for relevant work.

1. Find the following limits.
(a) $\lim _{x \rightarrow \frac{1}{2}} \frac{x^{3}-\frac{1}{8}}{1-2 x}$
(b) $\lim _{x \rightarrow 2^{-}}\left(\frac{1}{|x-2|}+\frac{1}{x-2}\right)$
(c) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin (2 x)}{x}$
2. (a) Find the derivative $f^{\prime}(x)$ of the function $f(x)=\sqrt{2 x+3}$ using only the definition of the derivative.
(b) Find the following limit or explain why it does not exist:

$$
\lim _{x \rightarrow 1}(x-1) \sin (1 /|x-1|)
$$

3. Find the following limits. If the limit is infinite, indicate whether it is ∞ or $-\infty$ and write DNE if the limit does not exist. Give an explanation for your conclusions.
(a) $\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x-2}}{\sin (x-2)}$
(b) $\lim _{x \rightarrow \infty} \frac{-3 x^{3}+10 x^{2}+2}{-3+10 x+2 x^{3}}$
(c) $\lim _{x \rightarrow \infty}\left(x^{3}-10000 x^{2}\right)$
4. (a) State the Intermediate Value Theorem.
(b) Prove that the equation $\cos x=x^{2}$ has at least one real root.
5. Differentiate the following functions: (You need not simplify.)
(a) $f(x)=\sqrt{\frac{x-1}{x+1}}$
(b) $y=\tan ^{2}\left(3 x+x^{2}\right)$
(c) $g(x)=\sin \frac{1}{x}$
(d) $h(x)=\frac{1}{\sin x}$
6. (a) Find an equation of the tangent line to the curve $(1+x) \cos (1+y)=\cos 1$ at $(0,0)$.
(b) The radius of a circular disk is 20 cm with maximum error in measurement of 0.3 cm . Use differentials to estimate the maximum error in the calculated area of the disk.
7. (a) Find the absolute maximum and the absolute minimum values of the function $f(x)=\frac{x}{x^{2}+4}$ when x is in the interval $[-3,-1]$.
(b) State the theorem you are using in part a) and explain why $f(x)$ satisfies the assumptions of the theorem.
8. Find the length of the shortest line segment through the point $(1,3)$ that is cut off by the first quadrant.
9. Integrate:
(a) $\int x^{-2} \sin \left(x^{-1}\right) d x$
(b) $\int \frac{d x}{(1+2 x)^{2}}$
(c) $\int_{1}^{2} \frac{x^{4}-2 x^{2}+1}{x^{3}} d x$
(d) $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x$
10. (a) Use the Midpoint rule with $n=4$ to estimate $\int_{-1}^{1} \sin ^{3} x d x$.
(b) Use only the definition of definite integral to find $\int_{0}^{1}(2 x-1) d x$.

$$
\text { Hint: } \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { and } \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

