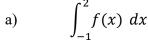
QUEENS COLLEGE DEPARTMENT OF MATHEMATICS FINAL EXAMINATION $2\frac{1}{2} \text{ HOURS}$

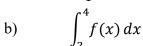
SPRING 2025

Mathematics 142
Instructions: Answer each question and show your work.

1. Find each of the following.

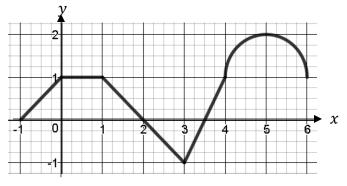
a)
$$\int \left(x + \frac{1}{x}\right)^2 dx$$


b)
$$\int \frac{dx}{x(1+\ln x)}$$


c)
$$\int \sec^2(2x) \sqrt{1 + \tan(2x)} \ dx$$

$$\int \frac{dx}{\sqrt{9-4x^2}}$$

e)
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos x} \, dx$$


2. The graph of f(x) consists of straight lines and a semicircle as shown. Evaluate each integral.

c)
$$\int_{4}^{6} f(x) \, dx$$

$$d) \qquad \int_{-1}^{6} f(x) \, dx$$

3. Consider the integral $\int_0^3 (6x - x^2) dx$.

- a) Estimate the integral using a Riemann sum with 6 subintervals and right endpoints.
- b) Use <u>the definition of the definite integral</u> as the limit of a Riemann sum to evaluate the integral. (The following formulas may be helpful.)

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

c) Use the Fundamental Theorem of Calculus Part 2 to evaluate the integral.

4. Find the derivative of each of the following.

a)
$$y = 3^{x^3} + \log_3(3x) - \sin^{-1}(\pi x)$$

b)
$$y = \cos\left[\tan^{-1}(e^x)\right]$$

c)
$$y = \int_{a^x}^{e^{2x}} \ln t^2 dt$$

d)
$$y = (x^2 + 1)^{\ln x}$$

- 5. Let R be the region bounded by $y = \cos x$, $y = \sin x$, x = 0 and $x = \frac{\pi}{4}$.
 - a) Find the area of the region R.
 - b) Find the volume of the solid obtained when region *R* is rotated about the *x*-axis. (One of these identities may be helpful)

$$\sin^2 x + \cos^2 x = 1$$
 $\cos^2 x - \sin^2 x = \cos(2x)$ $\sin^2 x - \cos^2 x = -\cos(2x)$

- c) Set up, but <u>do not evaluate</u>, the integral that gives the volume of the solid obtained when this region is rotated about the *y*-axis using the cylindrical shell method.
- d) Set up the integral to find the length of the curve $y = \cos x$ from x = 0 to $x = \frac{\pi}{4}$. Then use your calculator to find the length, rounded to 3 decimal places.
- 6. Solve the differential equation $\frac{dy}{dx} = \frac{\sin x}{e^{y/2}}$ with initial condition y(0) = 0.
- 7. In a study conducted at University of New Mexico, it was found that the mass (weight) of juvenile desert tortoises exhibited exponential growth after a diet switch. One of these tortoises had a mass of 64 g at the time of the diet switch, and 33 days later, the mass was 73 g.
 - a) Find an expression for the mass of the tortoise after t days.
 - b) How many days after the diet switch did the tortoise have a mass of 100 g? (Round to the nearest whole number.)