

QUEENS COLLEGE
DEPARTMENT OF MATHEMATICS

Final Examination
2 1/2 Hours

Mathematics 131

Fall 2025

Instructions: Answer all questions. Show all work in the provided blue exam book.

1. Given $f(x) = \frac{3}{x}$.
 - a) Use the limit definition of the derivative to find $f'(x)$.
 - b) Find an equation of the line tangent to the graph of $f(x)$ at the point $(3,1)$.

2. Use the provided graph of $f(x)$ to evaluate each of the following:
 - a) $\lim_{x \rightarrow 2^+} f(x)$
 - b) $\lim_{x \rightarrow 2^-} f(x)$
 - c) $\lim_{x \rightarrow 2} f(x)$
 - d) $f(2)$
 - e) $\lim_{x \rightarrow -\infty} f(x)$
 - f) $f(0)$
 - g) $\lim_{x \rightarrow 0^+} f(x)$
 - h) For what value(s) of x does the function f have a discontinuity? Explain using the definition of continuity.

3. Evaluate each limit. ($+\infty$, $-\infty$, and DNE are acceptable possible answers.)
 - a) $\lim_{x \rightarrow -1} \frac{x^2 - 1}{x^2 + 4x + 3}$
 - b) $\lim_{x \rightarrow 25} \frac{\sqrt{x} - 5}{x - 25}$
 - c) $\lim_{x \rightarrow +\infty} \frac{3 - x^3 + 10x^2}{5x + 2x^3}$
 - d) $\lim_{x \rightarrow 0^-} f(x)$, given $f(x) = \begin{cases} x^2 + 10 & , \text{ if } x < 0 \\ \sqrt{x} & , \text{ if } x \geq 0 \end{cases}$

4. Given $f(x) = x^3 - 2x^2 + 3$.
 - a) Can the Intermediate Value Theorem be used to show $f(x) = 1$ for some value of x in the interval $0 \leq x \leq 1$? Justify your answer.
 - b) Find the absolute extrema of $f(x)$ on the interval $0 \leq x \leq 1$

(continued on the back)

5. Find $\frac{dy}{dx}$ for each of the following functions. You do not need to simplify.

a) $y = \frac{4x^5}{5} + \sqrt[3]{x^5} - 2e^x + \ln(2x^4 + x) - \ln(x^7)$

b) $y = \frac{e^{3x-1}}{(5x^2 + x)^{100}}$

c) $y = 5^{x^2+3x}$ (Hint: Use logarithmic differentiation.)

d) $5x^2y + y^3 = 2x^3 + 15$

6. a) Suppose \$5000 is invested into a bank that pays an annual interest rate of 3.5%. Compute the balance after 6 years if interest is compounded

- i. monthly.
- ii. continuously.

b) How much money should be invested at an annual interest rate of 2% compounded continuously so that it will be worth \$1000 in five years?

7. Let $f(x) = 2x^3 - 6x^2 + 5$. Using calculus (not your graphing calculator):

- a) Find the intervals of increase and decrease of f .
- b) Find the relative (local) maxima and minima of f and their coordinates.
- c) Find the intervals of upward and downward concavity of f .
- d) Find the inflection point(s) of f and their coordinates.
- e) Using the information from parts a) – d), carefully sketch the graph of f . Label all relative extrema, inflection points, and the y-intercept.

Be sure to clearly label each part of the problem you are working on

8. A manufacturer will produce and sell x units of a product when the price is $p = 3x^2 - 4x$ dollars. The total cost to produce x units is given by the function $C(x) = -.05x^3 + 90x + 1000$ dollars.

- a) Find the total revenue function, $R(x)$.
- b) Find the total profit function, $P(x)$.
- c) Use marginal analysis to estimate the **cost** of producing the 7th unit.
- d) Find the actual **cost** of producing the 7th unit.
- e) Find the average **cost** per unit if 7 units are produced.

9. An ice sculpture is melting into an approximately circular puddle forming at its base. The area of the puddle is increasing at the rate of $10\pi \text{ ft}^2$ per hour. Find the rate that the radius of the puddle is changing at the instant when the radius of the puddle is 2 ft.