

QUEENS COLLEGE
DEPARTMENT OF MATHEMATICS
FINAL EXAMINATION

$2\frac{1}{2}$ HOURS

Mathematics 143

Fall 2025

Instructions: Answer all questions. Show all work.

1. Compute each of the following integrals:

a)
$$\int x^2 e^{5x} dx$$

b)
$$\int \sin^3 x \sqrt{\cos x} dx$$

c)
$$\int \frac{x^3}{\sqrt{x^2 + 9}} dx$$
 (using trigonometric substitution)

d)
$$\int \frac{6x^2 + 3x + 2}{x^3 + 2x^2} dx$$

2. Without using your calculator, find each of the following limits:

a)
$$\lim_{x \rightarrow 0} \frac{\cos x - 1}{e^x - x - 1}$$

b)
$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^{4n}$$

3. Determine if each of the improper integral converges or diverges. If it converges, find its value.

a)
$$\int_{-\infty}^{\infty} \frac{x}{(x^2 + 1)^2} dx$$

b)
$$\int_0^2 \frac{x}{\sqrt{4 - x^2}} dx$$

4. Determine the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x - 4)^n}{n + 1}$.

5. Determine if the following series are absolutely convergent, conditionally convergent or divergent. Justify your answer.

a)
$$\sum_{n=0}^{\infty} \frac{2n^2 - n + 10}{3n^3 - 4n + 2}$$

b)
$$\sum_{n=0}^{\infty} \frac{2^n \sin^2 n}{5^n}$$

c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \sqrt{\ln n}}$$

d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 4^n}{(n + 1)!}$$

(continued on the back)

6. a) Use the Maclaurin Series for $\cos x$ to find the Maclaurin series for $f(x) = x^3 \cos x$.

b) Using your answer to part a), evaluate $\int_0^1 x^3 \cos x \, dx$, correct to 4 decimal places.

7. Use the power series for $\frac{1}{1-x}$ to find a power series representation for $f(x) = \frac{1}{4+x^2}$.

8. a) Find $T_4(x)$, the fourth Taylor polynomial, for $f(x) = \ln \sqrt{x}$ about $a = 1$.

b) Use your answer to part a) to approximate $\ln \sqrt{1.1}$.

c) Estimate the maximum error that can result when using your approximation in part a) to approximate $f(x)$ on the interval $0.9 \leq x \leq 1.1$.