

QUEENS COLLEGE
MATHEMATICS DEPARTMENT
Final Exam - Mathematics 151 - FALL 2025
Time 2 Hours 30 Minutes.

Last, First Name : _____

Last 5 digits of your CUNY ID : # _____

Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_{10}	Q_{11}	Total
40	60	45	45	25	30	25	30	30	40	30	400

Table 1: Point Values for each Question

Instructions. Answer all questions in the provided space. Show all your work for full credit. Ti-84 Plus or equivalent Calculators are permitted.

1. (Estimated time: 9 minutes) Evaluate the following limits without using a calculator:

(a) $\lim_{x \rightarrow 3} \frac{x^2 - 9}{x - 3} =$

(b) $\lim_{x \rightarrow 0} \frac{\sin(3x)}{x} =$

(c) $\lim_{x \rightarrow \infty} \frac{3x^2 + 2x - 1}{5x^2 - x + 4} =$

2. (Estimated time: 15 minutes) Find the first derivative for each of the following. Simplify your answer where indicated.

(a) $f(x) = (x^2 + 1)^3 \cdot (\sin(\tan x))^6$ find $f'(x)$;

(b) $g(x) = \frac{\sec x}{x^2 + 2x + 1}$ find $g'(x)$;

(c) $(x^2 + y^2)^2 = 18(x^2 - y^2)$ find $\frac{dy}{dx}$;

(d) $F(x) = \int_1^{x^2} \frac{t}{t+1} dt$. find $F'(x)$ [Simplify your answer];

3. (Estimated time: 16 minutes) Evaluate the following integrals using the substitution rule:

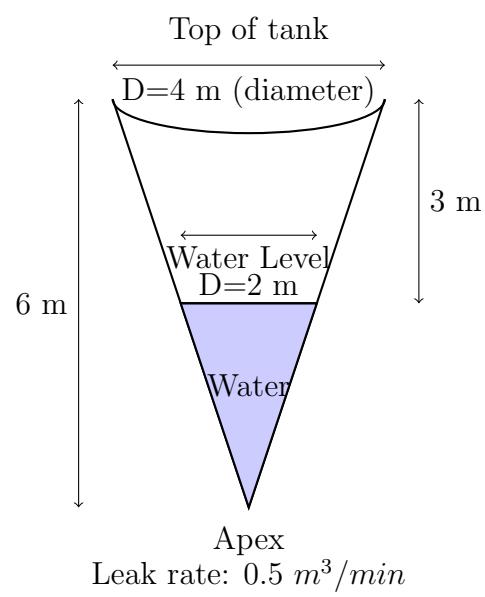
(a) $\int_1^2 (2x + 1)^5 dx$

(b) $\int 3x \cos(x^2 + 1) dx$

(c) $\int x^2 \sec^2(x^3) \cos(\tan(x^3)) dx$

4. (Estimated time: 12 minutes) Find the indicated primitive function of:

(a) $f(x) = 4x^3 - 2x + 5$; Find $F(x)$ if $F(1) = -2$

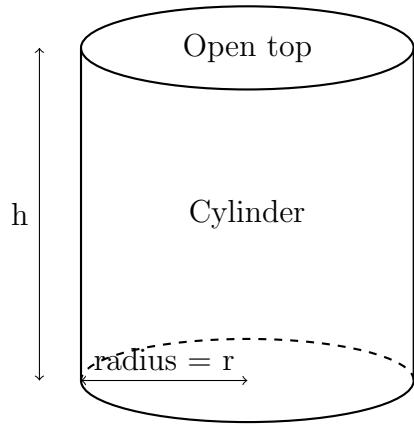

(b) $g'(x) = \sin x + \cos x + \frac{1}{x^2}$; Find $g(x)$

(c) $h''(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$; Find $h(x)$ if $h'(1) = 0, h(1) = 1$

5. **(Estimated time: 10 minutes)** Use linear approximation to estimate $\frac{2}{99}$. Provide the linear approximation formula used for your computation.

Hint: You may want to use similar triangles.

6. (Estimated time: 12 minutes) Water is leaking out of an inverted conical tank at a rate of 0.5 cubic meters per minute. The tank has a height of 6 meters and a base radius of 2 meters. How fast is the water level dropping when the water is 3 meters deep?



7. (Estimated time: 10 minutes) For $g(x) = x^2 + 1$ on $[0, 3]$, find c such that $g'(c) = \frac{g(3)-g(0)}{3-0}$. Interpret geometrically. Justify your answer and indicate the theorem/theorems used at each step.

8. (Estimated time: 10 minutes) For the function $f(x) = x^3 - 3x - 1$ on the open interval $(-1, 1)$, does there exist any point $x = c$ where $f(c) = 0$? Is this point unique? Explain why. Justify your answer and indicate the theorem/theorems used at each step.

Hint: Volume of a cylinder is base \times height. The Area of the side can be drawn as a rectangle where height is one of the sides and the circumference of the base or the top is the other.

9. (Estimated time: 12 minutes) A cylindrical container with no top is to be made from 12 square meters of material. Find the dimensions (radius and height) that maximize the volume. What is the maximum volume?

Total Material: 12 m^2 (bottom + side)

10. (Estimated time: 15 minutes) Approximate $\int_0^2 (x^2 + 1) dx$ using the midpoint rule with $n = 4$ subintervals. Use the Limit of a Riemann¹ Sum to compute the exact value of the integral.

¹[Note: $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$]

11. (Estimated time: 17 minutes) Analyze the function $\kappa(x) = x^3 - 3x^2 + 2x$:

- (a) Find domain, intercepts, and asymptotes (if any).
- (b) Find first and second derivatives.
- (c) Determine intervals of increase/decrease, concavity .
- (d) Identify local extrema (if any) and inflection points (if any).
- (e) Sketch the graph based on the above steps, labeling key features.